Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Книги » Домашняя » Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк 📕 - Книга онлайн бесплатно

Книга Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк

267
0
Читать книгу Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 97 98 99 ... 123
Перейти на страницу:

Для конечных математических структур все отношения можно описать конечными таблицами чисел, распространяющими идею таблицы умножения на другие типы отношений. Для структур с очень большим числом элементов эти таблицы становятся огромными и кодируются длинными числами, что смещает их вниз по списку. Однако для небольшой доли очень больших структур характерна внутренняя элегантная простота, что сильно упрощает их описание. Рассмотрим математическую структуру, элементами которой являются целые числа: 0, 1, 2, 3, …, и отношения сложения и умножения. Было бы напрасной тратой сил выписывать для задания умножения колоссальную таблицу умножения для всех пар чисел: даже если ограничиться первым миллионом чисел, таблица с миллионом строк и миллионом столбцов содержит триллион клеток. Вместо этого мы учим детей лишь таблице умножения первых десяти чисел, а также простому алгоритму, как использовать эту таблицу для умножения многозначных чисел. Для компьютеров мы описываем умножение ещё эффективнее, чем для детей: когда все числа представлены в двоичной системе счисления, нужно задать таблицу умножения размером всего 2 × 2 для нулей и единиц и добавить короткую компьютерную программу, которая указывает, как пользоваться таблицей для перемножения сколь угодно больших чисел.

Программа хранится просто как конечная строка нулей и единиц (битовая строка), которую можно интерпретировать как целое число, записанное в двоичной системе. Это даёт альтернативный способ кодирования и нумерации математических структур на рис. 12.4: пусть каждая математическая структура представляется числом, битовая строка которого является кратчайшей компьютерной программой, и её функции определяют все отношения в данной структуре. Теперь структуры будут появляться вверху списка, если их просто описать, даже если они огромны по числу своих элементов. Пионеры теории сложности Рэй Соломонофф, Андрей Колмогоров и Грегори Хайтин определили алгоритмическую сложность (для краткости — сложность) битовой строки как длину компьютерной программы, которая выдаёт эту строку. Это означает, что альтернативный основной список перечисляет математические структуры в порядке возрастания сложности.

Замечательная особенность этого нового списка состоит в том, что он также может содержать математические структуры с бесконечным числом элементов. Так, для определения математической структуры из всех целых чисел с операциями сложения и умножения понадобится просто задать кратчайшую программу, которая способна считывать сколь угодно длинные числа, складывать и перемножать их. Такие алгоритмы есть в системе Mathematica и других программных пакетах компьютерной алгебры. Математические структуры, включающие бесконечное множество точек, образующее континуум, подобно пространству-времени, электромагнитным полям и волновым функциям, нередко можно хорошо аппроксимировать конечными структурами, пригодными для компьютерной обработки. Именно так я с коллегами и выполняю большую долю расчётов в области теоретической физики.

Короче говоря, мультиверс IV уровня можно систематически отобразить путём перечисления математических структур с помощью компьютера и изучения их свойств. Если однажды нам удастся определить, в какой математической структуре мы живём, можно будет сослаться на неё по номеру в основном списке, и мы получим возможность записать свой адрес в полной физической реальности (рис. 12.5). Государства применяют разные схемы записи адресов: в одних почтовые индексы состоят из цифр, в других — из букв, а кое-где индексов нет вообще. Аналогично, способ записи локальной части адреса будет зависеть от математической структуры: в большинстве их нет ни квантовой механики, ни инфляции, а значит, нет ни мультиверсов I, II и III уровней, ни планет, хотя другие структуры могут содержать иные типы параллельных вселенных, о которых мы и не догадываемся.


Рис. 12.5. Для задания адреса в полной физической реальности мне понадобится указать своё положение в мультиверсе IV уровня (номер моей математической структуры), в мультиверсе III уровня (ветвь квантовой волновой функции), в мультиверсе II уровня (постинфляционный пузырь), в мультиверсе I уровня (хаббловский объём), а также положение внутри нашей Вселенной. Я привёл здесь небольшие числа, хотя на каждом из четырёх уровней может быть бесконечно много членов, так что в мой реальный адрес будут входить числа слишком большие, чтобы они поместились на конверте.


Структура мультиверса IV уровня

Исследовать мультиверс IV уровня интересно. Если принять популярное формалистическое определение математики как «изучение математических структур», то исследование мультиверса IV уровня окажется тем самым делом, которым занимаются математики. Для физиков вроде меня, признающих гипотезу математической Вселенной, это равносильно исследованию фундаментальной физической реальности и поиску нашего места в ней. Причём исследовать мультиверс IV уровня проще, чем любой нижестоящий мультиверс или даже нашу Вселенную, поскольку для этого не нужны ни ракеты, ни телескопы — достаточно компьютеров и идей. Так что я получил массу удовольствия, создавая компьютерные программы, перечисляющие и классифицирующие математические структуры.

Занимаясь этим на практике, сталкиваешься с ошеломляющей избыточностью. Существует очень много способов написать компьютерную программу, которая выполняет любое вычисление, и столь же огромное число эквивалентных способов описания конечных математических структур с помощью таблиц чисел, соответствующих, например, способам упорядочения или обозначения элементов. В гл. 10 мы упоминали о том, что математическая структура — это класс эквивалентности описаний. Так что каждая математическая структура должна появляться в основном списке всего однажды, причём заданная лишь одним, самым коротким, из множества эквивалентных описаний.

Для любых двух математических структур можно определить новую структуру путём объединения всех элементов двух исходных структур и отношений между ними. Многие структуры в нашем основном списке как раз составные, и при изучении мультиверса IV уровня есть смысл их игнорировать. Это связано с тем, что нет отношений, соединяющих две части, а значит, самосознающий наблюдатель в одной из таких частей никогда не узнает о существовании другой части и не испытает её влияния. Поэтому он может действовать так, будто другой части вовсе не существует либо она не является частью его математической структуры. Единственный случай, при котором составные структуры могут, вероятно, иметь значение, — когда они входят в решение проблемы меры, изменяя вероятности того, что вам выпадет жить в той или иной математической структуре. Поскольку составные структуры описывать гораздо сложнее, они обычно оказываются гораздо дальше в нашем списке, чем их части, и это может придавать им меньшую «меру». На самом деле для любого конечного числа структур мультиверса IV уровня далеко внизу основного списка существует единая составная структура, содержащая их все.

Хотя математические структуры в мультиверсе IV уровня не соединены каким-либо физически осмысленным образом, на метауровне между ними много интересных отношений. Например, мы только что разобрали, как одна структура может быть объединением других. Или: одна структура может в некотором смысле описывать другую. Элементы первой могут соответствовать отношениям во второй, а отношения в первой описывать, что происходит при комбинировании отношений во второй. В этом смысле содержащая 24 отношения структура «повороты куба» (рис. 12.4) описывается структурой, которую математики называют «группа вращений куба». Её 24 элемента соответствуют всем возможным поворотам, сохраняющим идеальный куб внешне неизменным. Множество математических структур обладает симметриями куба и, таким образом, имеет основания считаться кубами — например структуры, элементы которых соответствуют граням, вершинам или рёбрам куба, а отношения указывают, как повороты переупорядочивают эти элементы, либо говорят, какие из них чьими соседями являются.

1 ... 97 98 99 ... 123
Перейти на страницу:
Комментарии и отзывы (0) к книге "Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк"