Книга Большое космическое путешествие - Дж. Ричард Готт
Шрифт:
Интервал:
Закладка:
А что насчет мировой линии брифкейса? Он оказывается у меня в руках, как только я нахожу его в шкафчике. Если я буду просто держать его, то он отправится в хронопутешествие вместе со мной, и я принесу его в аудиторию еще до того, как найду в шкафчике. Мировая линия брифкейса получится кольцевой. Мировая линия брифкейса странная – у нее ни начала, ни конца. У моей мировой линии есть начало (я родился) и конец (я умер), но мировая линия брифкейса – замкнутая петля. Брифкейс в данном случае можно сравнить с частицей-джинном. Действительно, она, как и джинн, возникает из ниоткуда.
Брифкейс все время у меня на виду. Он не попадает на фабрику брифкейсов. Физики, исследующие путешествия в прошлое, вынуждены учитывать частицы-джинны, когда рассуждают о квантовых эффектах. Что, если на моем брифкейсе появится небольшая потертость, когда я заберу его с собой с лекции? Игорь Новиков считает, что такой износ, который претерпевает джинн-частица, должен в какой-то момент «исправляться», чтобы она вернулась в исходное состояние, – и мой брифкейс не исключение. При этом не нарушаются законы энтропии, так как брифкейс – это не изолированная система; энергия, необходимая на его починку, поступает извне.
Информация также может выступать в качестве джинна. Допустим, я прилетаю в 1915 год и даю Эйнштейну верные уравнения поля для общей теории относительности. Он может их записать и опубликовать. Откуда взялась эта информация? Я усвоил ее из статьи Эйнштейна, а Эйнштейн узнал ее от меня. Получается кольцевая мировая линия.
Законы физики допускают существование джинн-частиц – просто их возникновение маловероятно, – причем чем массивнее и сложнее такие частицы, тем менее вероятно их возникновение. Аналогичная история могла бы произойти, если бы я нашел на полу в поточной аудитории клочок бумаги и взял с собой не брифкейс, а этот клочок. В таком случае бумажка стала бы джинном, а носить ее с собой проще, чем брифкейс. Еще проще – я мог бы банально взять электрон и унести его с собой, а затем вернуть в прошлое, в лекционную аудиторию. Просто не столь вероятно найти для этой цели такой массивный объект, как брифкейс, да еще с конспектами к лекции о путешествиях во времени. Думаю, возможны и такие сложные джинны, но возникать они будут исключительно редко.
Путешествие в прошлое происходит при наличии мировой линии, которая закольцовывается в прошлое. Обычная ситуация отражена на рис. 18.1: мировые линии Земли и других планет идут по спирали вдоль мировой линии Солнца. Ничто не может двигаться со сверхсветовой скоростью, и все мировые линии устремлены в будущее. На рис. 21.2 показана ситуация, когда мы путешествуем в прошлое. Мировая линия путешественника замыкается сама на себя, и он становится свидетелем каких-то событий из собственного прошлого. Путешественник начинает путь внизу (в прошлом) и поднимается вверх до тех пор, пока не встречает повзрослевшего себя, который ему говорит: «Привет! Я – это ты в будущем! Прилетел в прошлое поздороваться с тобой». Он отвечает: «Правда?» и отправляется по петле обратно в прошлое. Затем он встречает себя же в юности и говорит: «Привет! Я – это ты в будущем! Прилетел в прошлое поздороваться с тобой». Молодой «двойник» отвечает: «Правда?» Путешественник во времени участвует в этой встрече дважды: как молодой и как более взрослый человек, но сама ситуация складывается лишь однократно. Можно сравнить ее с четырехмерной скульптурой, на которую нанесены мировые линии. Она никогда не меняется: именно так и выглядит вся картина. Если вам интересно, как ощущалась бы подобная ситуация, – просто проведите пальцем по мировой линии и посмотрите, какие еще мировые линии с ней пересекутся.
Здесь открывается один из варантов решения знаменитого парадокса бабушки: что бы случилось, если бы я отправился в прошлое и случайно убил собственную бабушку еще до того, как она родит мою мать? В таком случае она не родит мою мать, а мать – меня, и тогда меня не будет, я не смогу отправиться в будущее и убить мою будущую бабушку. Это, в свою очередь, означает, что она без проблем родит мою мать, а мать – меня. Парадокс. Традиционное решение парадокса бабушки таково: путешественники во времени не могут изменить прошлое. Они всегда – часть прошлого. Да, вы могли отправиться в прошлое и выпить в компании бабушки чаю с печеньем, когда она была еще юной девушкой, но не могли убить ее, поскольку она должна родить вашу мать, которая родит вас. Решение должно быть самосогласованным. Кип Торн, Игорь Новиков и их коллеги сформулировали ряд мысленных экспериментов из области путешествий во времени, сталкивая бильярдные шары; они пытались показать, что всегда можно найти самосогласованные решения, не содержащие парадоксов.
Рис. 21.2. Пространственно-временная схема мировой линии путешественника в прошлое. Иллюстрация адаптирована из J. Richard Gott, Time Travel in Einstein’s Universe, Houghton Mifflin, 2001
Не беспокойтесь по поводу изменения истории: как бы вы ни старались, ничего у вас не выйдет. Если вернуться на «Титаник» и предупредить капитана об айсберге, то капитан проигнорирует ваши слова, точно как он не придал значения всем остальным сообщениям об айсбергах, – ведь мы знаем, что корабль затонет. Вы убедитесь, что изменить ход событий невозможно. Хронопутешествия в фильме «Невероятные приключения Билла и Теда» построены по тому же принципу самосогласованности.
Альтернативный вариант решения парадокса бабушки – это эвереттовская многомировая теорияквантовой механики. Мнения физиков по поводу этой теории разнятся, но давайте для начала разберемся, как она устроена. В многомировой теории считается, что множество параллельных миров могут сосуществовать, как железнодорожные пути в маневровом парке. Мы видим одну историю, словно наш поезд идет по конкретному пути. События, которые мы наблюдаем, подобны станциям, сменяющим друг друга. Вот Вторая мировая война… вот люди высаживаются на Луне и так далее. Но существует множество параллельных миров. Есть мир, где Вторая мировая война не произошла. Такая теория основана на подходе к квантовой механике как к сумме множества историй, предложенном Ричардом Фейнманом. Фейнман понял, что для расчета вероятности любого исхода того или иного будущего эксперимента нужно учесть все возможные истории, которые могли бы к нему привести. Кому-то кажется, что это просто очередное странное правило расчетов в квантовой механике, но сторонники многомировой модели считают, что все эти истории реальны и взаимодействуют друг с другом. Дэвид Дойч считает, что путешественник во времени может отправиться в прошлое и убить там свою бабушку, когда она была еще юной девушкой. В таком случае возникнет новое ответвление истории: в этом варианте истории будут и живой хронопутешественник, и его мертвая бабушка. Тот путь, где хронопутешественник все-таки родился и его бабушка осталась жива, также продолжает существовать. Путешественник по-прежнему помнит часть своей биографии, свершившейся до поворота на новый путь. Оба пути существуют.
Теперь у нас есть два адекватных решения парадокса бабушки. Первое – консервативное, где пространство-время представлено в виде единой самосогласованной четырехмерной скульптуры, неизменной по сути. Второе – более радикальная многомировая интерпретация квантовой механики. Оба решения работают.