Книга Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Леонард Сасскинд
Шрифт:
Интервал:
Закладка:
Это почти состоявшееся вычисление имело не больше шансов убедить Стивена Хокинга, чем мои аргументы. Тем не менее кольцо смыкалось. Для реализации предложения Вафы и создания экстремальной черной дыры с большим классическим горизонтом требовались новые детали конструктора «Тинкертой». К счастью, их уже готовы были открыть в Санта-Барбаре.
D-браны Полчински
D-браны следовало бы называть Р-бранами — по инициалу Полчински. Но к тому времени, когда Джо открыл свои браны, термин Р-браны уже использовался для совсем другого объекта. Поэтому Джо назвал свои — D-бранами, в честь немецкого математика девятнадцатого века Иоганна Дирихле. Тот, конечно, ничего непосредственно с D-бранами не делал, но его математические исследования волн имели к ним некоторое отношение.
Слово брана не встречается в словарях, кроме как в контексте теории струн. Оно происходит от общеупотребительного термина мембрана, означающего двумерную поверхность, способную изгибаться и растягиваться. Открытие свойств D-бран, сделанное Полчински в 1995 году, было одним из самых важных событий в истории современной физики. Вскоре оно принесло замечательные результаты во всех областях — от черных дыр до ядерной физики.
Простейшая брана — это нульмерный объект, называемый О-браной. Частица или точка пространства нульмерна, по точке невозможно перемещаться, поэтому частица и 0-брана — это синонимы. Сдвинувшись на один уровень, мы получаем 1-браны, которые одномерны. Фундаментальные струны — это частный случай
1-бран. Мембраны — двумерные листы материи — это 2-браны. А что можно сказать о 3-бранах? Они существуют? Представьте себе твердый куб из резины, заполняющий некоторую область пространства. Его можно назвать заполняющей пространство 3-браной.
Может показаться, что мы исчерпали измерения. Очевидно, что нет возможности уложить 4-брану в трехмерное пространство. Но что, если у пространства есть свернутые измерения, шесть штук, например? В этом случае одно из измерений 4-браны может тянуться в свернутом измерении. В действительности если всего cyществует девять измерений пространства, то в нем могут содержаться любые виды бран, вплоть до 9-бран.
D-брана — это не просто любого вида брана. Она имеет совершенно особые свойства, а именно: к ней могут прикрепляться фундаментальные струны. Рассмотрим случай DO-браны. Здесь D означает, что это D-брана, а О указывает, что она нульмерна. Так что DO-браны — это частицы, на которых могут оканчиваться фундаментальные струны.
Dl-браны часто называют D-струнами, потому что они одномерны и сами являются разновидностью струн, хотя их не следует путать с фундаментальными струнами[145]. Обычно D-струны значительно тяжелее фундаментальных струн. D2-бpaны — это мембраны, вроде резиновых листов, но опять же, с тем свойством, что на них могут оканчиваться фундаментальные струны.
Были ли D-браны странной произвольной выдумкой, которую Полчински добавил к теории струи? В его первой исследовательской работе, я думаю, так и могло быть. Физики-теоретики часто изобретают новые концепции просто для того, чтобы поиграть с ними и увидеть, к чему они приводят. На самом деле в 1994 году, когда Джо впервые показал мне идею D-бран, это было как раз в духе такого разговора: «Гляди, мы можем добавить в теорию струн новый объект. Правда, забавно? Давай копнем его свойства».
Но где-то в 1995 году Джо осознал, что D-браны заполняют колоссальную математическую дыру в теории струн. Их существование было в действительности необходимо для завершения растущей паутины логики и математики теории. И D-браны оказались как раз тем недостающим секретным ингредиентом, необходимым для построения экстремальной черной дыры.
Математика теории струн вознаграждает усилия
В 1996 году за дело взялись Вафа с Энди Строминджером. Объединив струны и браны, они смогли сконструировать экстремальную черную дыру с большим и, без сомнений, классическим горизонтом. Поскольку экстремальная черная дыра рассматривалась как крупный классический объект, квантовая дрожь могла оказать лишь ничтожно малое влияние на горизонт. Теперь пространства для сомнений не оставалось. Теория струн дала верное количество скрытой информации, предполагаемое формулой Хокинга, без всяких неоднозначных множителей, которые равны то ли двум, то ли пи, и без знака пропорциональности.
Это не была обычная черная дыра вроде тех, о которых упоминают в школе. Объект, который Строминджер и Вафа построили из струн и D-бран, походил на кошмарный сон инженера, но это была простейшая конструкция, имеющая большой классический горизонт, который был им нужен. Потребовались все математические хитрости теории струн, включая струны, D-браны, полный набор дополнительных измерений и много чего еще. Сначала они взяли несколько DS-бран, заполняющих пять из шести свернутых измерений пространства. Вдобавок к этим внедренным DS-бранам они обернули большое количество Dl-бран вокруг свернутых измерений. А затем добавили струны, присоединенные обоими своими концами к D-бранам. И вновь открытые куски струн должны были играть роль атомов горизонта, которые содержат энтропию. (Если вы немного растерялись, не беспокойтесь. Мы коснулись вещей, к легкому пониманию которых человеческий мозг не приспособлен.)
Строминджер и Вафа выполнили те же шаги, что уже делались ранее. Сначала они установили рукоятки на ноль, так чтобы гравитация и другие силы исчезли. Без этих сил, которые все усложняют, можно было точно подсчитать, сколько энтропии запасено во флуктуациях открытых струн. Технически расчеты были сложнее и тоньше, чем все, что предпринималось до сих пор, но, проявив изобретательность, они в этом деле преуспели.
Следующим шагом стало решение эйнштейновских уравнений поля для случая экстремальной черной дыры. На этот раз для вычисления площади не потребовалось основанной на неопределенности растягивающей процедуры. К огромному их (и моему) удовлетворению, Строминджер и Вафа обнаружили, что площадь горизонта и энтропия были не просто пропорциональны; информация, скрытая в извивах струн, присоединенных к бранам, в точности согласовывалась с формулой Хокинга. Они вбили этот гвоздь.