Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Книги » Домашняя » О чем говорят цифры. Как понимать и использовать данные - Ким Хо 📕 - Книга онлайн бесплатно

Книга О чем говорят цифры. Как понимать и использовать данные - Ким Хо

272
0
Читать книгу О чем говорят цифры. Как понимать и использовать данные - Ким Хо полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 8 9 10 ... 58
Перейти на страницу:

Очевидно, проблемы возникали из-за поля «Компания», размещенного под полем фамилии клиента. Некоторые клиенты считали, что в нем надо указать название банка, эмитировавшего их кредитную карту, а в поле «Адрес, на который будет направлен счет» указывали адрес этого банка. В результате в процессе списания средств с карты клиента операция отменялась как некорректная. После того как поле «Компания» просто убрали из формы, прибыль Expedia возросла на 12 миллионов долларов. Меджибов говорит, что специалисты Expedia расследовали несколько таких историй, и это всегда либо приносило фирме дополнительную прибыль, либо эффективность операционной деятельности повышалась.

Иногда расследование требует более глубокого статистического и количественного анализа. Один из сотрудников Меджибова изучал вопрос о том, какие точки взаимодействия с покупателями важнее всего для стимулирования продаж. Аналитик использовал регрессионную модель Кокса – метод, обычно используемый для прогнозирования вероятности дожития пациентов до определенного момента в будущем; «анализ выживаемости». Оказалось, что более простые модели, применявшиеся ранее, давали искаженную информацию о том, какие маркетинговые подходы наиболее эффективны. Меджибов прокомментировал это так: «Мы и не знали, сколько денег утекает сквозь наши пальцы»[16].


Проект «Эврика!». Проекты этого типа напоминают проекты CSI, но только целенаправленно подходят к выявлению и решению проблемы в отличие от ситуаций, когда трудности возникают неожиданно. Обычно рассматриваются проблемы, порождаемые глобальными переменами в стратегии компании или ее бизнес-модели. Как правило, такие аналитические проекты требуют больше времени для реализации и предполагают больший объем статистического и математического анализа. Иногда проекты типа «Эврика!» включают в себя элементы проектов других видов, поскольку ожидаемые результаты очень важны для заказавших анализ организаций.

Вернемся к анализу в компании Expedia. Встретился там и проект типа «Эврика!», когда требовалось отменить штрафы за перенос сроков и отмену бронирования номеров в отелях, туров и автомашин. До 2009 года Expedia и ее конкуренты взимали до 30 долларов за перенос сроков или отмену брони – в дополнение к соответствующим санкциям со стороны отелей. При заказе отеля через Expedia или другие онлайновые агентства номер обходился клиентам значительно дешевле, чем при заказе непосредственно в отеле, поэтому они мирились со штрафами за перенос или отмену заказа. Но к 2009 году стало ясно, что это превратилось в проблему. Стоимость номера при заказе через Expedia существенно приблизилась к расценкам самих отелей, поэтому Expedia сделала упор на удобство обслуживания, а штрафы за перенос и отмену бронирования стали неудобны. Аналитики изучили коэффициенты удовлетворенности клиентов, и оказалось, что у тех, кому пришлось платить этот штраф, уровень удовлетворенности существенно ниже. Сотрудники колл-центра Expedia имели право отменить штраф только по одной причине – в случае смерти кого-либо из членов семьи клиента. Темпы роста численности освобожденных от штрафа по этой причине за последние три года составляли двузначную цифру. То ли в это время свирепствовала эпидемия с высоким процентом смертельных исходов, то ли клиенты поняли, что это единственный способ вернуть свои деньги.

Топ-менеджеры агентства поняли, что на рынке туристических услуг произошли существенные изменения, но штрафы за отмену и перенос сроков бронирования составляли значительную часть общей выручки. Возник вопрос, как поведет себя коэффициент перехода контактов в продажи (то есть процент оплативших номер по отношению к числу приславших заявку), если отменить эти штрафы. В апреле 2009 года Expedia объявила о временном (сроком на месяц) моратории на штрафы за перенос сроков и отмену бронирования (в чем-то похоже на историю об эксперименте сумасшедшего ученого, описанную ниже). Коэффициент перехода контактов в продажи существенно вырос. Топ-менеджеры поняли, что получено достаточно доказательств того, что отмена штрафов целесообразна, и очень скоро примеру Expedia последовали другие компании отрасли.

В центре Сиэтла находится штаб-квартира компании Zillow, предоставляющей информацию о жилой недвижимости в регионе. Вероятно, эта компания известна в среде квантов прежде всего благодаря разработанному ее сотрудниками алгоритму Zestimates, позволяющему рассчитать стоимость объектов недвижимости. Но, как и в Expedia, корпоративная культура Zillow построена на культе данных и аналитики, что и неудивительно, поскольку основателем обеих этих компаний является Рик Бартон.

Один из проектов типа «Эврика!» посвящен глобальной проблеме: реорганизации отношений с агентами по недвижимости. Zillow начала работать с агентами по недвижимости в 2008 году, а до этого взаимодействовала непосредственно с покупателями. Особенность бизнес-модели, построенной на работе с агентами, в том, что компания рекламирует своих агентов и направляет к ним потенциальных покупателей. За каждого покупателя с агента взимаются комиссионные, но, с точки зрения топ-менеджеров, их размер недостаточен. Директор Zillow по продуктам и стратегии Хлоя Харфорд особенно заинтересована в разработке адекватной модели оптимизации комиссионных за направленных к агентам покупателей.

Харфорд, получившая ученую степень по вулканологии, уже проводила довольно сложные математические анализы раньше. Тем не менее она и ее коллеги первоначально полагалась на методы, которые называли «расчетами на салфетке», чтобы оценить другие пути, позволяющие привлечь больше потенциальных покупателей и установить справедливые комиссионные с агентов. В апреле 2010 года Zillow внедрила новую модель взаимоотношений с агентами, немедленно скопированную конкурентами и включавшую помимо прочего продажу рекламных услуг агентам. В результате поток контактов с потребителями резко возрос, причем они были переключены непосредственно на агентов. Zillow также внедрила интеллектуальный алгоритм расчета комиссионных за потенциальных покупателей с учетом их экономической стоимости и коэффициента перехода контактов в продажи. Конкуренты в той или иной степени старались повторить эти новшества, но не в таком объеме, как Zillow. Контакты потенциальных покупателей и определение комиссионных за их направление к агентам настолько важны для Харфорд и ее коллег, что постоянно тестируются различные подходы к их оценке, в том числе и с использованием методов, описанных в истории о безумном ученом. Коротко говоря, проекты «Эврика!» тесно связаны с моделью бизнеса компании и ее коммерческим успехом.


Проект «Сумасшедший ученый». Мы знаем, как широко распространены научные эксперименты в высокотехнологичных отраслях, например фармацевтической. Производящие лекарства компании тестируют продукты на целевых и контрольных группах, давая членам последних плацебо (лекарства-«пустышки», вещества без лечебных свойств). Они уделяют огромное внимание соблюдению случайного метода распределения участников между целевой и контрольной группами, чтобы их состав был однородным и не влиял на оценку эффективности лекарства. Этот действенный аналитический прием делает возможным причинно-следственный анализ и распространение выводов, сделанных на основе данных, полученных в целевой группе, на генеральную совокупность.

1 ... 8 9 10 ... 58
Перейти на страницу:
Комментарии и отзывы (0) к книге "О чем говорят цифры. Как понимать и использовать данные - Ким Хо"