Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Книги » Домашняя » Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность - Бен Орлин 📕 - Книга онлайн бесплатно

Книга Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность - Бен Орлин

254
0
Читать книгу Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность - Бен Орлин полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 7 8 9 ... 87
Перейти на страницу:

Эта точка зрения ставит математику в подчиненное положение. Ох, я ей сочувствую (хоть это мне несвойственно). Естествознание пытается осмыслить реальность, и это чертовски сложно, как вы знаете сами, если когда-нибудь имели дело с реальностью. Вещи рождаются. Вещи умирают. Их ископаемые остатки безумно разрозненны. Вещи демонстрируют качественно различное поведение в квантовом и релятивистском масштабе. Реальность — это кавардак.



Естествознание пытается понять реальность. Оно ставит своей целью предсказывать, классифицировать и объяснять. И в этом стремлении оно воспринимает математику в качестве жизненно важного помощника: Кью, изобретающий полезные гаджеты для очередного приключения Джеймса Бонда.



А теперь развернем камеру на 180° и сменим ракурс. Как математика воспринимает естествознание?

Вы обнаружите, что мы не просто поменяли угол зрения. Мы полностью сменили жанр фильма. Естествознание представляет себя главным героем боевика, а математика видит в себе директора экспериментального арт-проекта.

Причина в том, что на фундаментальном уровне математике нет дела до реальности.



Я не имею в виду странные привычки математиков: бормотать под нос, неделями носить одни и те же брюки, время от времени забывать, как зовут их супругу[12]. Я имею в виду их работу. Несмотря на агрессивную рекламную кампанию о практической пользе математики, она довольно безразлична к физической вселенной.

Математику волнуют не вещи, а идеи.

Математика устанавливает правила, а затем путем тщательных рассуждений прослеживает, что следует из этих правил. Кого волнует, что полученные выводы — о бесконечно длинных конусах и сардельках в 42 измерениях — не имеют отношения к реальности? Важна их абстрактная истинность. Математика живет не в материальной вселенной естествознания, а в концептуальной вселенной логики.



Математики называют такую работу творческой. Они сравнивают ее с искусством.

Естествознание становится их музой. Представьте себе композитора, который слушает щебет птиц и вплетает эту мелодию в свой новый опус. Или художника, которые созерцает кучевые облака, дрейфующие по полуденному небу, и на основе этого образа рисует свой новый пейзаж. Люди искусства не стремятся запечатлеть вещи с фотографической точностью. Реальность для них не более чем благодатный источник вдохновения.

Точно так же видит мир и математика. Реальность — прекрасная отправная точка, но самые поразительные цели лежат далеко за ее пределами.

3. Парадокс математики

Математика видит в себе мечтательную поэтессу. С точки зрения естествознания математика — это поставщик специальных технических инструментов. Здесь мы сталкиваемся с одним из величайших парадоксов человеческого познания: оба взгляда верны, но их с трудом можно примирить друг с другом. Если математика — это не более чем поставщик инструментов, почему эти инструменты настолько поэтичны? И если она поэтесса, почему ее поэзия так неожиданно полезна?



Чтобы понять, что я имею в виду, обратимся к запутанной истории теории узлов[13].

Эта отрасль математики, как и многие другие, была вдохновлена естественно-научной задачей. До открытия атомов некоторые ученые (включая лорда Кельвина) придерживались мнения, что вселенная наполнена субстанцией под названием «эфир», а материя создана из узлов и клубков эфира. Они стремились к тому, чтобы классифицировать все возможные узлы и создать периодическую таблицу клубков.

Вскоре физики утратили интерес к этой идее, поглощенные новой блестящей теорией атомов (ее несправедливое преимущество заключалось в том, что она была верна). Но математики уже попались на крючок. Они обнаружили, что классификация узлов — сладостная и дьявольская задача. Две разновидности одного и того же узла могли выглядеть совершенно по-разному. Абсолютно отличающиеся друг от друга узлы поражали своим сходством. Это было отличной подпиткой для математиков, которые скоро разработали сложную и исчерпывающую теорию узлов, будучи уверены, что их интеллектуальная абстракция не имеет никакого практического применения.

Прошло около ста лет.

И вот из укрытия выползла настоящая змея. Как вы знаете, каждая биологическая клетка содержит информацию в молекуле ДНК, которая фантастически длинна. Если выпрямить ДНК одной клетки вашего организма, она растянется почти на два метра. В 100 000 раз длиннее самой клетки.

ДНК — это длинная струна, упакованная в миниатюрный контейнер. Если вы когда-нибудь клали наушники в карман или вынимали новогоднюю гирлянду из картонной коробки, вы знаете, что их необходимо свернуть в клубок. Как это удается бактерии? Можем ли мы выучиться у бактерии такому трюку? Можем ли обезвредить раковую клетку, расплетая ее ДНК?

Биология была в недоумении. Ей требовалась помощь. «О! — воскликнула математика. — Я знаю одну штуку!»



Вот краткая биография теории узлов. Она родилась из практических нужд. Вскоре она превратилась в нечто абсолютно оторванное от практики, логическую игру для поэтов и философов. А дальше каким-то образом это творение, которое на протяжении многих лет, казалось, не имело никакого отношения к реальной жизни, стало чрезвычайно полезным совершенно не в той области, ради которой оно родилось.

1 ... 7 8 9 ... 87
Перейти на страницу:
Комментарии и отзывы (0) к книге "Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность - Бен Орлин"