Книга Великая теорема Ферма - Саймон Сингх
Шрифт:
Интервал:
Закладка:
Лишь совсем недавно математики наделили компьютеры еще большей властью, используя так называемые генетические алгоритмы. Это компьютерные программы, общая структура которых составлена математиком, но тонкие детали определяются самим компьютером. Некоторые направления, или «линии», в программе обладают способностью мутировать и эволюционировать наподобие индивидуальных генов в органической ДНК. Отправляясь от исходной материнской программы, компьютер может порождать сотни дочерних программ, слегка отличающихся из-за введенных компьютером случайных мутаций. Дочерние программы используются в попытках решения проблемы. Большинство программ бесславно не срабатывают, а та, которой удается дальше других продвинуться к желанному результату, используется в качестве материнской программы, порождающей новые поколение дочерних программ. Выживание наиболее приспособленного интерпретируется как выделение той из дочерних программ, которая позволяет особенно близко подойти к решению проблемы. Математики надеются, что, повторяя этот процесс, программа без вмешательства извне приблизится к решению проблемы. В некоторых случаях такой подход оказался весьма успешным.
Специалист в области «computer science» Эдвард Френкин даже заявил, что когда-нибудь компьютер найдет решение какой-нибудь важной проблемы без помощи математиков. Десять лет назад Френкин учредил премию Лейбница размером в 100000 долларов. Премия будет присуждена первой компьютерной программе, способной сформулировать и доказать теорему, которая окажет «глубокое влияние на развитие математики». Будет ли когда-нибудь присуждена премия Лейбница — вопрос спорный, но одно можно сказать со всей определенностью: компьютерной программе всегда будет недоставать прозрачности традиционных доказательств, и в сравнении с ними она будет проигрывать, уступая им в глубине. Математическое доказательство должно не только давать ответ на поставленный вопрос, но и способствовать пониманию, почему ответ именно таков, каков он есть, и в чем именно состоит его суть. Задавая вопрос на входе в черный ящик и получая ответ на выходе из него, мы увеличиваем знание, но не понимание. Из представленного Уайлсом доказательства Великой теоремы Ферма мы узнали, что уравнение Ферма не допускает решений в целых числах потому, что любое такое решение привело бы к противоречию с гипотезой Таниямы-Шимуры. Уайлс не только ответил на вызов Ферма, но и обосновал свой ответ, указав, что он должен быть именно таким, а не другим, чтобы не нарушить фундаментальное соответствие между эллиптическими кривыми и модулярными формами.
Математик Рональд Грэхем описывает недостаточную глубину компьютерных доказательств на примере одной из великих не доказанных по сей день гипотез — гипотезы Римана: «Я был бы весьма и весьма разочарован, если бы можно было подключиться к компьютеру, спросить у него, верна ли гипотеза Римана, и получить в ответ: "Да, верна, но Вы не сможете понять доказательство"». Математик Филип Дэвис, похожим образом отреагировал на решение проблемы четырех красок: «Моей первой реакцией было: "Потрясающе! Как им удалось решить эту проблему?". Я ожидал какой-то блестящей новой идеи, красота которой перевернула бы всю мою жизнь. Но когда я услышал в ответ: "Они решили проблему, перебрав тысячи случаев и пропустив все варианты один за другим через компьютер", — меня охватило глубочайшее уныние. Я подумал: "Значит, все сводилось к простому перебору, и проблема четырех красок вовсе не заслуживала названия хорошей проблемы"».
Предложенное Уайлсом доказательство Великой теоремы Ферма опирается на доказательство гипотезы, родившейся в 50-е годы XX века. Его рассуждения используют ряд математических методов, созданных за последнее десятилетие, в том числе им самим. Доказательство Уайлса — шедевр современной математики, что неизбежно приводит к заключению: оно не совпадает с доказательством Ферма. Ферма написал на полях своего экземпляра «Арифметики» Диофанта, что недостаток места не позволяет ему привести доказательство. Доказательство Уайлса занимает 100 страниц убористого математического текста и заведомо удовлетворяет критерию Ферма (это доказательство невозможно воспроизвести на полях «Арифметики»), но Ферма не были известны ни модулярные формы, ни гипотеза Таниямы-Шимуры, ни группы Галуа, ни метод Колывагина-Флаха.
Но если у Ферма не было доказательства Уайлса, то что у него было? Математики разделились на два лагеря. Твердолобые скептики склоняются к мнению, что Великая теорема Ферма была результатом редкого момента слабости математического гения XVII века. Они утверждают, что хотя Ферма и написал на полях «Арифметики» Диофанта: «Я нашел поистине удивительное доказательство», — в действительности он нашел доказательство, содержавшее ошибку. Вполне возможно, что доказательство Ферма строилось примерно так же, как доказательство Коши и Ламе.
Другие математики, назовем их романтическими оптимистами, убеждены в том, что Ферма мог найти какое-то гениальное доказательство. Каким бы ни было это гипотетическое доказательство, оно должно было быть основано на методах XVII века и использовать аргумент настолько тонкий, что он ускользнул впоследствии от всех — от Эйлера до Уайлса. Несмотря на публикацию доказательства Уайлса, существует много математиков, которые уверены в том, что им удастся добиться широкого признания и славы, открыв первоначальное доказательство Ферма.
Хотя для решения загадки XVII века Уайлсу пришлось прибегнуть к методам XX века, тем не менее найденное им доказательство Великой теоремы Ферма удовлетворяло всем правилам, установленным комиссией Вольфскеля. 27 июня 1997 года Эндрю Уайлс получил премию Вольфскеля в размере 50000 долларов. И снова Ферма и Уайлс попали на первые полосы газетных изданий всего мира. Великая теорема Ферма была официально признана доказанной.
Какая проблема теперь привлечет внимание Уайлса? В течение семи лет он работал над доказательством Великой теоремы Ферма в обстановке полной секретности. Неудивительно, что он отказывается отвечать на вопросы о том, над чем работает сейчас, но над чем бы Уайлс ни работал, не подлежит сомнению, что новая проблема никогда не захватит его с такой полнотой, как Великая теорема Ферма. «Ни одна другая проблема не будет означать для меня так много. Великая теорема Ферма была моей детской мечтой. Заменить ее не сможет ничто. Я доказал ее. Уверен, что попытаюсь решить какие-то другие проблемы. Некоторые из проблем очень трудны, и если мне удастся решить какую-нибудь из них, то это, несомненно, снова даст мне ощущение достижения. Но нет ни одной проблемы в математике, которая могла бы захватить меня так, как захватила Великая теорема Ферма.
Мне выпало счастье осуществить в моей взрослой жизни то, что было мечтой моего детства. Я знаю, что это редкая удача, но если во взрослом состоянии вам представляется возможность заниматься чем-то таким, что значит для вас так много, то это занятие служит для вас наградой более высокой, чем что-либо еще. Доказав Великую теорему Ферма, я не мог не ощутить чувство потери, но в то же время меня охватило чувство бескрайней свободы. На протяжении восьми лет я был настолько поглощен ее доказательством, что не мог думать ни о чем другом. Я думал о теореме Ферма все время — с утра до ночи. Для размышлений об одном и том же — срок очень долгий. Теперь эта одиссея подошла к концу. Мой разум обрел покой».