Книга Веревка вокруг Земли и другие сюрпризы науки - Карл Саббаг
Шрифт:
Интервал:
Закладка:
Если вы полагаете, будто планета вращается вокруг центра неподвижной звезды, то ошибаетесь: и звезда, и планета вращаются вокруг точки, расположенной между центрами этих двух тел, но ближе к центру более массивного тела, то есть звезды. Больше всего это похоже на тамбурмажорский жезл с набалдашниками разной величины на концах, который крутят вокруг точки, расположенной близко к одному из концов. Это означает, что, пока планета описывает большой круг, звезда тоже движется, проявляя в своем спектре то синее, то красное смещение, в зависимости от того, приближается она к наблюдателю или удаляется от него.
Однако перемещения таких звездно-планетных систем, по сравнению с мощным красным смещением удаляющихся галактик, столь незначительны, что подобным способом можно обнаружить только самые большие планеты — такие, которые в триста раз крупнее Земли и возникновение жизни на которых крайне маловероятно из-за очень высокой силы тяжести.
Если астрономы ищут смещения спектральных линий при помощи обычного спектроскопа, их исследования зачастую не приносят желаемых плодов: изменения бывают столь незначительны, что спектроскоп их вообще не фиксирует. Но недавно группа ученых из немецкого Института астрофизики Общества Макса Планка изобрела метод наложения очень тонких калибровочных линий, напоминающих деления на металлической линейке, на спектр отдаленных астрономических объектов. Благодаря этому методу стало возможно засечь даже самое крохотное смещение, вызванное такой невысокой скоростью, как, допустим, один сантиметр в секунду.
Это новое приспособление называется «лазерный частотный гребень» и основывается на лазере, испускающем лучи разного спектрального состава под управлением атомных часов, которые измеряют время с точностью до одной миллиардной доли секунды; такие лазеры могут воспроизводить искусственные спектры с высочайшей точностью. Этот спектр служит аналогом делений на металлической линейке и позволяет устанавливать положение эмиссионной линии удаленного объекта с гораздо большей точностью, чем раньше.
С изобретением новых приборов для наблюдения и измерений астрономия стала двигаться вперед семимильными шагами. Пока лазерный частотный гребень находится в стадии разработки и почти не применяется для решения многочисленных астрономических вопросов, ожидающих ответа. Но как только его начнут использовать для обнаружения далеких планет размером с Землю, можно ожидать существенного скачка в поисках жизни во Вселенной.
Способность науки доказать что-либо часто переоценивается. Дни сменяются днями, в очередной раз наступает рассвет, но гипотеза о том, что Земля не стоит на месте, а вращается, до сих пор не доказана, она просто получила подтверждение. Благодаря тем же самым наблюдениям можно подтвердить и совершенно противоположные предположения, например, что Солнце вращается вокруг Земли. Однако наука может найти наблюдениям и более достойное применение — они помогают опровергать те или иные гипотезы.
Скажем, гипотеза, гласящая, что все лебеди белые, подтверждается (хотя и не надежно) всякий раз, когда мы видим белого лебедя. Но одно-единственное наблюдение — когда мы своими глазами видим черного (а также красного или синего) лебедя — опровергает эту гипотезу.
Важный пример великой пользы, которую приносят науке наблюдения, дает относительно недавняя работа двух космологов: Мартина Риса и Пита Хата. Они выдвинули предположение, что Вселенная может находиться в опасном нестабильном состоянии, возникшем из-за процесса охлаждения, который сопровождает Вселенную на протяжении всех тринадцати миллиардов лет ее существования. Это состояние было названо метастабильным минимумом, поскольку выглядит Вселенная как будто бы стабильно (метастабильно), но на деле это может оказаться не так. У нее есть все шансы стать весьма нестабильной.
Для лучшего понимания представим себе две горы и ущелье между ними. Круглый валун, лежащий в самой низкой точке ущелья, стабилен, то есть в данном случае устойчив. Вы можете толкать его вверх, в сторону той или другой горы, однако, как бы вы ни старались, в конце концов он все равно скатится на свое место, на самое дно. Но если у одной из гор примерно на полпути к вершине есть уступ и площадка на нем слегка наклонена в сторону склона горы, вы можете представить себе валун, лежащий на этом уступе, и он тоже будет казаться довольно устойчивым. Если вы подтолкнете его к краю уступа, но в последний момент остановитесь, он откатится в изначальное положение. Однако если вы будете толкать с большим упорством, валун доберется до края и рухнет в ущелье. Он находился в метастабильном состоянии, которое перешло в нестабильное.
У Риса и Хата не было способа узнать, какого состояния достигла Вселенная за миллиарды лет остывания: стабильного или метастабильного. А кстати, почему это так важно?
Если Вселенная в действительности нестабильна и скорее напоминает валун на уступе горы, значит, ее можно «столкнуть» с края — в том случае, если в какой-то одной ее точке сконцентрируется достаточное количество энергии. Тогда будет запущена волна уничтожения, распространяющаяся со скоростью света, и в конце концов эта волна разрушит всю Вселенную. Физики исследуют структуру атомов, заставляя их сталкиваться на высокой скорости в громадном устройстве под названием «коллайдер», занимающем несколько квадратных километров. В результате рождаются новые типы частиц (см. главу «Что ускоряет ускоритель ядерных частиц?»). Чтобы это получилось, столкновение в одной точке пространства должно создать чрезвычайно высокую концентрации энергии.
Рис и Хат, проведя вычисления, установили, что никакой современный коллайдер не способен даже приблизиться к опасной концентрации энергии. Но чем мощнее такие устройства, тем больше информации они позволяют собрать — особенно по части того, что творилось в первые мгновения существования Вселенной. Значит, когда-нибудь, пришли к выводу Рис и Хат, ученые смогут построить коллайдер с такой высокой концентрацией энергии, что он поставит под угрозу всю Вселенную.
А дальше они рассуждали так: если мы сможем доказать, что когда-то в прошлом где-либо во Вселенной уже была достигнута подобная высочайшая концентрация энергии, то, поскольку Вселенная все еще на месте, она явно не пострадала от какой-то там волны уничтожения, а следовательно, ее состояние не метастабильно. Фактически Рис и Хат пытались найти черного лебедя — достигнутую где-то в прошлом высокую концентрацию энергии, которая не повлекла за собой никаких разрушительных последствий, — а значит, раз и навсегда отвергнуть гипотезу, что Вселенная пребывает в состоянии метастабильного минимума.
Они рассчитали, что программа тотального уничтожения оказалась бы запущена при концентрации свыше тысячи триллионов электронвольт, а затем принялись выяснять, была ли во Вселенной когда-нибудь достигнута такая концентрация. Ни один из «нормальных» источников энергии не мог подобраться к такой цифре: черные дыры, нейтронные звезды, белые карлики, пульсары — все они просто пышут энергией, но не в таких огромных концентрациях. Затем Рис и Хат вспомнили о космических лучах — высокоэнергетических частицах, которые мчатся на огромных скоростях сквозь пространство и иногда сталкиваются со звездами и планетами. Однако подобные столкновения тоже не производят того количества энергии, которого хватило бы для полного уничтожения всего сущего.