Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Книги » Психология » Интуиция - Дэвид Майерс 📕 - Книга онлайн бесплатно

Книга Интуиция - Дэвид Майерс

375
0
Читать книгу Интуиция - Дэвид Майерс полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 68 69 70 ... 78
Перейти на страницу:

Дрожь азарта — это явно один из компонентов ответа на этот вопрос. Жадность — еще один мотивирующий фактор. Но, учитывая тот факт, что умный жадина никогда не заплатит S1 за то, что стоит 50 центов, мы должны смотреть глубже. Почему человек обманывается своей жадностью? Какие когнитивные вирусы заражают интуицию азартного игрока?

Неправильное восприятие вероятности. Лотереи — это не только налог на бедных, но и, по словам математика из Университета Депола Роджера Джоунса, это «налог на тех, у кого трудности с математикой». Трудно интуитивно оценивать очень неравные шансы. Попытайтесь объяснить, что означает вероятность 10 тысяч к одному баскетболисту-старшекласснику, пренебрегающему уроками и мечтающими о месте в «NBA».

Психологи исследовали «субъективную переоценку» невероятных событий. Те, кто делает ставки, «переоценивают шансы маловероятных, но очень благоприятных исходов», — отмечает статистик из Университета штата Айова Хэл Стерн. В одном из своих исследований он проанализировал ставки, сделанные на 38 047 лошадей в 3785 забегах Гонконгских бегов. Результаты данного анализа, равно как и другие похожие работы, показали, что публика склонна недооценивать вероятность того, что победит явный фаворит, и переоценивать успех тех лошадей, которые идут в конце списка. «Людская интуиция плохо работает с вероятностью», — замечает Стерн.

Да, иногда забег выигрывают «темные лошадки». Когда вышедший на пенсию электрик из Иллинойса Фрэнк Капаси потратил $5 на покупку билетов лотереи «Powerball» в 1998 г., на каждый из его пяти билетов была сделана ставка 80,1 миллиона к 1. Среди покупателей 138,5 миллиона билетов — вследствие чего должны были выиграть один или два человека — Капаси стал единственным счастливым победителем, выигравшим $195 миллионов (на самом деле, после выплаты всех налогов, он единовременно получил $70 миллионов). Два месяца спустя 13 рабочих со сборочного конвейера в Огайо скинулись по $ 10 и приобрели 130 билетов. Они оказались единственными выигравшими — среди приобретенных почти 211 миллионов билетов — и выиграл и $295,7 миллиона в эту же лотерею. Через 9 месяцев в Бостоне Мария Грассо, эмигрантка из Чили, которая днем работала бебиситером, а по ночам ухаживала за детьми-инвалидами, купила три билета лотереи «Big Game». Один из этих билетов оказался единственным выигрышным среди проданных 83 миллионов билетов, и бывшая чилийка выиграла $197 (опять-таки, после уплаты всех налогов на руки она получила всего лишь $70 миллионов).

Три билета выиграли и произвели фурор. Однако более миллиарда проигравших билетов остались незамеченными на фоне этих трех джекпотов. (Каждый из этих выигрышей получили, как мы и ожидали, именно те люди, которым нравятся лотереи, — те, кто испытывал острую необходимость в деньгах, но кто не мог себе позволить никаких игорных долгов). Фантазии по поводу выигрыша кружат голову сорокадвухлетнему нью-йоркскому водителю грузовика Джо, который тратит на билеты лото еженедельно от $30 до $50. Хотя за четыре года он не выиграл ни цента — спустил за это время в надежде на джекпот $10 тысяч, — он упорствует в своих намерениях. «Ну, никогда не знаешь наверняка».

Да, вы действительно никогда не знаете заранее. Подумайте о тех тысячах исполненных надеждами людей, которым звонит «премиальный патруль» банковской расчетной палаты, вручающий призы, и говорит, что до их дома «трудно добраться» и что они их ждут в ресторане «Uncle Jack's». Это правда, никогда не знаешь наверняка. Но, учитывая то, что вероятность выиграть гран-при в $10 миллионов составляет 1:100 миллионам, возможно, они могли бы спокойно посетить этот дорогой ресторан и так. Мы осознаем шансы 1:100 или 1:1000, но различие между 1:10 тысяч и 1:80 миллионам или 1:100 миллионам вызывает путаницу в нашем сознании. Если вероятность выигрыша всего лишь 2:10 тысячам, то ставки могут показаться невероятно «тощими». Но не теряйте надежды — даже 1:10 тысячам дает вам шанс в 80 тысяч раз больше, чем билет лотереи «Powerball».

Молния все равно куда-нибудь попадет (однако молния с гораздо большей вероятностью попадет в вас, чем вы выиграете в лотерею «Powerball»). Да, странные вещи случаются. Для Марии Грассо выигрыш был невероятным счастливым случаем. В 1999 г. пассажиры сербского поезда, а через три недели пассажиры автобуса в Косово стали жертвами столь же невероятного несчастного случая. И поезд, и автобус ехали по мосту как раз в тот самый момент, когда бомбы НАТО поразили их. Такое стечение обстоятельств поистине невероятно. Но сбросьте достаточное количество бомб (или купите достаточное количество билетов), и кто-нибудь обязательно погибнет (или получит приз).

Если, несмотря на все капризы судьбы, вы все-таки продолжите играть в лотерею «Powerball», есть одна умная вещь, которую вы можете сделать, например так, как три упомянутых выше победителя, и выберите те номера, на которые не поставят другие, кто разделил бы с вами приз в случае выигрыша. Учитывая, что любая комбинация из пяти случайных чисел от 1 до 49 так же вероятна, как любая другая, не выбирайте свои числа так, как, по мнению большинства людей, должна выглядеть случайная последовательность (скажем, 3,17, 25,32 и 46). В выигравшем билете «чертовой дюжины счастливчиков из Огайо», четыре числа приходились на интервал от 39 до 49. В 2001 г. Кармен Кастеллано, вышедшая на пенсию клерк из супермаркета в г. Сан-Хосе, штат Калифорния, стала единственным победителем «Superlotto» и выиграла $141 миллион, выбрав номера 3,22,43, 44,45 (и меганомер 8).

Психолог Эйлин Хилл отмечает такое же явление в Британской национальной лотерее, в которой люди должны выбрать 6 номеров из 49. В те дни недели, когда не бывает победителей, выигрывают обычно последовательности, которые не выглядят случайными, например, такая: 2,5,21,22,25,32; недели, когда наблюдается множество победителей, обычно характеризуются отсутствием сочетаний элементов и числами, далеко отстоящими друг от друга, — именно этого многие люди ожидают от случайных данных. Во время одной из лотерей, когда выиграла последовательность 1,17,23,32,38 и 42, оказалось 133 победителя, которые поделили между собой выигрыш. Ирония ситуации состоит в том, что большинство людей, которые пытались генерировать последовательность, которая выглядела бы случайной, забывают о сочетаниях элементов, которые так часто наблюдаются в случайных данных. И когда они придумывают последовательности, им зачастую не хватает изобретательности. Последовательность 1,2,3,4,5 и 6 так же вероятна, как любая другая. Но почти 30 тысяч игроков среди 128 миллионов покупателей билетов выбрали именно ее. Хотя нет лучше способа составить случайную последовательность чисел, чем позволить машине сделать это за вас, многие люди думают, что они справятся с этим лучше.

Есть еще одно распространенное неслучайное предпочтение в отношении чисел, представляющих собой даты рождения. Чтобы объяснить это предпочтение, исследовательница из Дартмура Лори Снелл исследовала 102 006 чисел, выбранных 17 001 человеком в лотерее «Powerbal» в 1996 г., где надо было выбрать числа от 1 до 45. Как показано на рисунке, меньшие числа, связанные с днями рождения (и счастливыми номерами), на самом деле были более вероятными. Самым популярным числом была семерка; менее одной трети тех, кто выбрал семерку, выбрали наименее популярное число 37. Юбилейный тираж Британской национальной лотереи отдал предпочтение маленьким номерам — 5 из 6 были меньше 31 (нужно было выбирать из 49 чисел). В результате бывало так, что джекпот делили между собой семеро победителей. Поэтому, чтобы не делиться выигрышем, не выбирайте популярные номера.

1 ... 68 69 70 ... 78
Перейти на страницу:
Комментарии и отзывы (0) к книге "Интуиция - Дэвид Майерс"