Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Книги » Домашняя » От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной - Марио Ливио 📕 - Книга онлайн бесплатно

Книга От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной - Марио Ливио

212
0
Читать книгу От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной - Марио Ливио полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 67 68 69 ... 89
Перейти на страницу:

Многие и сейчас считают, что общая теория относительности – это самая изобретательная физическая теория за всю историю человечества. Знаменитый физик Ричард Фейнман как-то признался: «Никак не могу понять, как он до этого додумался». В основе теории лежит две тончайшие догадки[388]: (1) эквивалентность гравитации и ускорения и (2) новая роль пространства-времени, которое перестало быть пассивным зрителем и превратилось в главного героя в драме вселенской динамики. Прежде всего Эйнштейн задумался о том, какие ощущения испытывает человек в свободном падении в гравитационном поле Земли, и понял, что ускорение и гравитация, в сущности, неотличимы друг от друга. Если человек живет в закрытом лифте на Земле и этот лифт движется вверх с постоянным ускорением, человек может подумать, будто он живет в месте, где гравитация сильнее: напольные весы наверняка покажут больше его нормального веса. Подобным же образом астронавты в космическом корабле переживают состояние невесомости просто потому, что и они, и корабль движутся относительно Земли с одинаковым ускорением. В своей лекции, прочитанной в Киото в 1922 году, Эйнштейн рассказал, как ему в голову пришла эта мысль: «Я сидел на стуле в патентном бюро в Берне, и вдруг меня осенило: “В свободном падении человек не чувствует собственного веса”[389]. Я даже вздрогнул. Эта простая идея произвела на меня сильное впечатление. И подтолкнула к созданию теории гравитации». Вторая идея Эйнштейна состояла в том, чтобы взять Ньютонову гравитацию и перевернуть ее с ног на голову. Эйнштейн утверждал, что гравитация – это не какая-то загадочная сила, которая действует по всему пространству. Напротив, масса и энергия свертывают пространство-время так же, как человек, стоящий на трамплине, заставляет его провисать. Гравитацию Эйнштейн определял как искривление пространства-времени. То есть планеты движутся по самым коротким путям в пространстве-времени, искривленном под воздействием Солнца, точно так же как мячик для гольфа следует неровностям лужайки, а джип лавирует в дюнах пустыни Сахары. Свет тоже распространяется не прямолинейно, а изгибается в искривленных окрестностях крупных масс.

На илл. 32 приведено письмо, которое Эйнштейн написал в 1913 году, когда разрабатывал свою теорию. В этом письме, адресованном американскому астроному Джорджу Эллери Хейлу, Эйнштейн объясняет искривление света в гравитационном поле и то, как Солнце искажает свет далекой звезды. Этот важный прогноз был впервые проверен в 1919 году во время солнечного затмения. Организовал наблюдения (в Бразилии и на острове Принсипи в Гвинейском заливе) Артур Эддингтон, а отклонения, которые зафиксировала[390] его группа и экспедиция во главе с Артуром Громмелином (примерно 1,98 и 1,61 угловой секунды) с учетом погрешности наблюдения соответствовали предсказанию Эйнштейна в 1,74 угловой секунды (Ньютонова теория гравитации предсказывала половину этого значения). Время, согласно общей теории относительности, также «искривлено»: часы вблизи массивных тел тикают медленнее, чем часы вдалеке от них. Это явление подтверждено экспериментально[391] и уже учитывается в повседневной работе спутников GPS.

Главным принципом, лежащим в основе общей теории относительности, стала идея подлинно революционная: то, что мы воспринимаем как силу тяжести, есть всего-навсего проявление того факта, что масса и энергия искривляют пространство-время. В этом смысле Эйнштейн, по крайней мере, по духу, был ближе к геометрическим (а не динамическим) представлениям древнегреческих астрономов, чем к Ньютону, который делал упор на силы. Пространство-время перестало быть фиксированным, неизменным фоном, оно способно изгибаться, искривляться, растягиваться в ответ на присутствие материи и энергии, и эти искривления, в свою очередь, заставляют вещество двигаться, что мы и наблюдаем. Как однажды выразился авторитетный физик Джон Арчибальд Уилер, «Вещество диктует пространству-времени, как искривляться, а пространство-время диктует веществу, как двигаться». Вещество и энергия становятся вечными партнерами пространства и времени.

Своей общей теорией относительности Эйнштейн блистательно решил проблему распространения силы гравитации быстрее света – условие, которое не давало покоя теории Ньютона. В общей теории относительности скорость передачи сводится к тому, насколько быстро рябь ткани пространства-времени распространяется от одной точки до другой. Эйнштейн показал, что подобные складки и вздутия – геометрическое проявление гравитации – перемещаются в точности со скоростью света. Иначе говоря, изменения гравитационного поля не могут передаваться мгновенно.

Чем слово наше отзовется

Хотя поначалу космологическая постоянная и модель статической Вселенной Эйнштейна вполне устраивали, вскоре его радость развеялась без следа, поскольку новые научные открытия показали, что модель статической Вселенной несостоятельна. Поначалу Эйнштейна ждало несколько теоретических разочарований[392], первое из которых настигло его почти сразу же. Спустя всего месяц с публикации космологической статьи Эйнштейна его коллега и друг Виллем де Ситтер[393] нашел решение уравнений Эйнштейна, предполагавшее полное отсутствие вещества. Космос, лишенный вещества, явно противоречил надеждам Эйнштейна связать геометрию Вселенной с наполняющими ее массой и энергией. С другой стороны, сам де Ситтер был очень доволен, поскольку с первого дня возражал против введения космологической постоянной. В своем письме Эйнштейну, датированном 20 марта 1917 года, де Ситтер настаивал, что лямбда, быть может, и перспективна с философской точки зрения, но с физической определенно бессмысленна. Особенно его тревожило то обстоятельство, что, как он считал, значение космологической постоянной невозможно найти эмпирически. В тот момент Эйнштейн был еще готов рассмотреть любые варианты. В ответном письме де Ситтеру 14 апреля 1917 года есть прекрасный пророческий абзац, сильно напоминающий знаменитые слова Дарвина: «В будущем… много света будет пролито на происхождение человека и на его историю» (см. главу 2):

«В любом случае одно остается неизменным. Общая теория относительности допускает введение в уравнения поля Λgµν [космологического члена]. Настанет день, когда наши познания о композиции фиксированного звездного неба, о наблюдаемых движениях фиксированных звезд и о положении спектральных линий как функции расстояния продвинутся так далеко, что мы сможем эмпирически решить вопрос о том, исчезает Λ или нет. Убежденность – прекрасный мотив, но скверный судья!»

1 ... 67 68 69 ... 89
Перейти на страницу:
Комментарии и отзывы (0) к книге "От Дарвина до Эйнштейна. Величайшие ошибки гениальных ученых, которые изменили наше понимание жизни и вселенной - Марио Ливио"