Книга Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - Алекс Беллос
Шрифт:
Интервал:
Закладка:
Джоан Форсайт: Две другие Джоан лгут.
Лора Лэм: Только одна из девочек по фамилии Смит говорит правду.
Флора Фламмери: Нет, две девочки по фамилии Смит говорят правду.
Учитывая, что из этих одиннадцати утверждений по меньшей мере семь не соответствуют действительности, выясните, кто же ходил в кино?
9. СЛУЧАЙ РОДСТВА
Наверное, в Кинслидейле не так уж много молодых женщин, поскольку каждый из пяти мужчин женился на овдовевшей матери одного из них. Пасынок Дженкинса Томкинс – отчим Перкинса. Мать Дженкинса – подруга миссис Уоткинс, мать мужа которой – кузина миссис Перкинс.
Какая фамилия у пасынка Симкинса?
Логические задачи наподобие представленных выше в настоящее время широко известны как табличные головоломки, потому что их лучше всего решать с помощью таблицы, в которой следует отобразить все возможные варианты. Самая знаменитая головоломка такого типа – задача о зебре – появилась в 1960-х годах; ее автор неизвестен.
Впервые задача о зебре была опубликована в американском журнале Life International в 1962 году. Ее часто называют загадкой Эйнштейна, поскольку считается, что ее придумал именно он. Это было бы весьма впечатляюще, учитывая, что великий ученый умер в 1955 году. Об этой головоломке также нередко говорят, что ее способны решить только два процента населения планеты. По всей вероятности, это заявление не соответствует действительности, но приманка замечательная.
10. ЗАДАЧА О ЗЕБРЕ
1. На улице пять домов.
2. Шотландец живет в красном доме.
3. У грека есть собака.
4. В зеленом доме пьют кофе.
5. Боливиец пьет чай.
6. Зеленый дом находится справа от дома цвета слоновой кости.
7. Тот, кто носит броги (грубые рабочие башмаки), держит улиток.
8. В желтом доме носят криперы (обувь с шипами на подошве).
9. В среднем доме пьют молоко.
10. Датчанин живет в первом доме.
11. Сосед того, кто носит сандалии, живет в доме по соседству с человеком, который держит лису.
12. Криперы носят в доме по соседству с тем, в котором держат лошадь.
13. Тот, кто носит шлепанцы, пьет апельсиновый сок.
14. Японец носит вьетнамки.
15. Датчанин живет по соседству с синим домом.
Кто пьет воду? Кто держит зебру?
Для уточнения условий задачи следует отметить, что все пять домов окрашены в разные цвета, а их обитатели имеют разную национальную принадлежность, держат разных домашних животных, пьют разные напитки и носят разную обувь. В версии головоломки, опубликованной в Life International, соседи курили американские сигареты разных марок. Я заменил их обувью, поскольку Эйнштейн был известен тем, что никогда не носил носков.
Реакция читателей Life была ошеломляющей. «Как только журнал поступил в продажу, ответы лавиной хлынули в отдел корреспонденции, – писал редактор журнала в следующем номере, в котором головоломка была напечатана прямо на обложке. – Их присылали юристы, дипломаты, врачи, инженеры, учителя, физики, математики, полковники, рядовые, священники, домохозяйки, а также некоторые поразительно образованные и логически мыслящие дети. Все корреспонденты жили за тысячу километров друг от друга – в провинциальных деревнях Англии, на Фарерских островах, в Ливийской пустыне, в Новой Зеландии, но у них был один талант – чрезвычайно высокий уровень интеллекта». Читатель, не подведи меня!
Если вам понравилась эта головоломка, вы по достоинству оцените гениальность следующей задачи, ломающей мозг. Придуманная молодым логиком из Кембриджа Максом Ньюманом, она была опубликована в колонке Хьюберта Филлипса в журнале New Statesman в 1933 году. Филлипс подписывал свою колонку псевдонимом Калибан, по имени порабощенного дикаря из пьесы Шекспира «Буря». Многие задачи Калибана были созданы в сотрудничестве с профессиональными математиками, и представленная ниже, пожалуй, самая блестящая.
Эта головоломка – творение гения. На первый взгляд, информации, по условиям задачи, до смешного мало, но, разумеется, в ней есть все необходимое для поиска решения. Журнал Mathematical Gazette назвал головоломку Ньюмана «настоящей жемчужиной» и уверял: «Чтобы в нее поверить, нужно ее решить». Мне решение далось нелегко, но это не помешало восхищаться его исключительной элегантностью.
11. ЗАВЕЩАНИЕ КАЛИБАНА
Завещание Калибана содержало следующий пункт: «Я завещаю по десять своих книг Лоу, Y.Y.[8] и Критику. Пусть они выбирают их в таком порядке.
1. Те, кто видел меня в зеленом галстуке, не могут выбирать раньше Лоу.
2. Если Y.Y. не был в Оксфорде в 1920 году, то выбирающий первым никогда не давал мне взаймы зонтик.
3. Если вторым выбирает Y.Y. или Критик, то Критик выбирает раньше того, кто влюбился первым».
К сожалению, Лоу, Y.Y. и Критику не удалось вспомнить ни одного из названных фактов, но поверенный обратил внимание на то, что если головоломка составлена правильно (то есть в ней нет утверждений, не имеющих отношения к решению), то можно логически вывести очередность выбора.
В каком порядке должны выбирать книги Лоу, Y.Y. и Критик?
Лоу, Y.Y. и Критик были коллегами Филлипса в New Statesman, но этот факт вряд ли поможет в решении задачи. Важно, что каждое ее условие имеет отношение к решению головоломки, поэтому вы должны исключить все условия, в которых любая часть любого утверждения избыточна. Впоследствии выдающиеся способности Макса Ньюмана к постановке задач нашли более серьезное применение в области их решения. В годы Второй мировой войны он возглавил отделение дешифровки (Newmanry) в Блетчли-парке, что привело к созданию «Колосса» – первой в мире программируемой электронной вычислительной машины. Ньюман был коллегой и близким другом Алана Тьюринга, отца теоретической компьютерной науки. Именно лекции Ньюмана в Кембридже вдохновили Алана Тьюринга на написание знаковой статьи «О вычислимых числах» (On Computable Numbers). После войны Ньюман организовал в Манчестере вычислительную лабораторию Лондонского королевского общества и уговорил Тьюринга присоединиться к нему.
Хьюберт Филлипс – самый ранний источник следующей удивительной головоломки о трехсторонней дуэли (или труэли), перефразированной мной в знак уважения к фильму, который заканчивается дуэлью с участием трех героев[9].