Книга Математика для любознательных (сборник) - Яков Перельман
Шрифт:
Интервал:
Закладка:
И лишь при желании выразить числом, сколько граммов вещества заключает вся наша солнечная система, понадобились бы наименования выше квадрильона, потому что в числе этом 34 цифры (2 и 33 нуля): это - две тысячи квинтильонов.
Если вам интересно, каковы наименования сверх-исполинов, следующих за квадрильоном, вы найдете их в приводимой здесь табличке:
Далее наименований не имеется. Но и эти, в сущности, почти не употребляются, да и мало кому известны. Как велики выражаемые ими числа, видно хотя бы из того, что число граммов вещества во вселенной (по современным воззрениям) «всего» 10 нональонов.
В заключение остановимся на арифметическом (вернее, пожалуй, геометрическом) великане особого рода - на кубической миле: мы имеем в виду географическую милю - составляющую 15-ю долю экваториального градуса и заключающую 7420 метров. С кубическими мерами наше воображение справляется довольно слабо; мы обычно значительно преуменьшаем их величину - особенно для крупных кубических единиц, с которыми приходится иметь дело в астрономии. Но если мы превратно представляем себе уже кубическую милю - самую большую из наших объемных мер, - то как ошибочны должны быть наши представления об объеме земного шара, других планет, солнца? Стоит поэтому уделить немного времени и внимания, чтобы постараться приобрести о кубической миле более соответствующее представление.
В дальнейшем воспользуемся картинным изложением талантливого германского популяризатора А. Бернштейна, приведя (в несколько измененном виде) длинную выписку из его полузабытой книжечки - «Фантастическое путешествие через вселенную» (появившейся более полувека тому назад).
«Положим, что по прямому шоссе мы можем видеть на целую милю (7 1/2 км) вперед. Сделаем мачту длиною в милю и поставим ее на одном конце дороги, у верстового столба. Теперь взглянем вверх и посмотрим, как высока наша мачта. Положим, что возле этой мачты стоит одинаковый с ней высоты человеческая статуя - статуя более семи километров высоты. В такой статуе колено будет находиться на высоте 1800 метров; нужно было бы взгромоздить одну на другую 25 египетских пирамид, чтобы достигнуть до поясницы статуи!
Вообразим теперь, что мы поставили две таких мачты вышиною в милю на расстоянии мили одна от другой и соединили обе мачты досками; получилась бы стена в милю длины и милю вышины. Это - квадратная миля.
Если бы подобная стена действительно существовала, например, вдоль Невы в Ленинграде, то - заметим мимоходом, - климатические условия этого места изменились бы баснословным образом: северная сторона города могла бы иметь еще суровую зиму, когда южная уже наслаждалась бы ранним летом. В марте месяце можно было бы с одной стороны стены прогуливаться в лодке, а с другой - ездить в санях и кататься на коньках… Но мы отвлеклись в сторону.
Мы имеем деревянную стену, стоящую отвесно. Представим себе еще четыре подобных стены, сколоченные вместе, как ящик. Сверху прикроем его крышкой в милю длины и милю ширины. Ящик этот займет объем кубической мили. Посмотрим теперь, как он велик, т. е. что и сколько в нем может поместиться.
Начнем с того, что, сняв крышку, бросим в ящик все здания Ленинграда. Они займут там очень немного места. Отправимся в Москву и по дороге захватим все губернские и уездные города. Но так как все это только покрыло дно ящика, то для заполнения его поищем материалов в другом месте. Возьмем Париж со всеми его триумфальными воротами, колоннами, башнями и бросим туда же. Все это летит, как в пропасть; прибавка едва заметна. Прибавим Лондон, Вену, Берлин. Но так как всего этого мало, чтобы хоть сколько-нибудь заполнить пустоту в ящике, то станем бросать туда без разбора все города, крепости, замки, деревни, отдельные здания. Все-таки мало. Бросим туда все, что только сделано руками человека в Европе; но и с этим ящик едва наполняется до одной четверти. Прибавим все корабли мира; но и это мало помогает. Бросим в ящик все египетские пирамиды, все рельсы Старого и Нового Света, все машины и фабрики мира, - все, что сделано людьми в Азии, Африке, Америке, Австралии. Ящик заполняется едва до половины. Встряхнем его, чтобы в нем улеглось ровнее, и попробуем, нельзя ли дополнить его людьми.
Соберем всю солому и всю хлопчатую бумагу, существующую в мире, и расстелем ее в ящике, - мы получим слой, предохраняющий людей от ушибов, сопряженных с выполнением подобного опыта. Все население Германии - 50 миллионов человек - уляжется в первом слое. Покроем их мягким слоем в фут толщиною и уложим еще 50 миллионов. Покроем и этот слой и, кладя далее слой на слой, поместим в ящике все население Европы, Азии, Африки, Америки, Австралии… Все это заняло не более 35 слоев, т. е., считая слой толщиной в метр, - всего 35 метров. Понадобилось бы в 50 раз больше людей, чем их существует на свете, чтобы наполнить вторую половину ящика…
Что же нам делать? Если бы мы пожелали поместить в ящике весь животный мир - всех лошадей, быков, ослов, мулов, баранов, верблюдов, на них наложить всех птиц, рыб, змей, все, что летает и ползает, - то и тогда мы не наполнили бы ящика доверху без помощи скал и песку.
Такова кубическая миля. А из земного шара можно сделать 660 миллионов подобных ящиков! При всем почтении к кубической миле, к земному шару приходится питать еще большее уважение».
Теперь, когда неимоверная огромность кубической мили (около 350 куб. километров) стала до некоторой степени ощущаться читателем, мы прибавим, что целая кубическая миля пшеничных зерен насчитывала бы их «всего» несколько триллионов.
Весьма внушительную вместимость имеет и кубический километр. Нетрудно подсчитать, например, что ящик таких размеров мог бы вместить 5000 биллионов спичек, вплотную уложенных; для изготовления такого количества спичек фабрика, выпускающая миллион спичек в сутки, должна была бы работать 14 миллионов лет; а чтобы такое число спичек доставить, потребовалось бы 10 миллионов вагонов - поезд длиною в 100.000 километров, т. е. в 2 1/2 раза длиннее земного экватора. И все-таки в целом кубическом километре воды содержится не более одного триллиона мельчайших капель (считая объем капли в 1 куб. миллиметр), в миллион раз меньше квадрильона.
Исполинские размеры триллиона и квадрильона после сказанного о кубических миле и километре еще более выростают в нашем сознании.
Огромные промежутки времени представляются нам еще более смутно, чем огромные расстояния и объемы. Между тем, геология говорит нам, что со времени отложения наиболее древних пластов земной коры протекли сотни миллионов лет. Как ощутить неизмеримую огромность таких периодов времени? Один немецкий писатель[92] предлагает для этого такой способ: