Книга Планиверсум. Виртуальный контакт с двухмерным миром - Александр Дьюдни
Шрифт:
Интервал:
Закладка:
Внешние отростки используются для плавания и захвата пищи. Они способны координировать свои движения. Чтобы захватывать микроскопические частицы пищи, внешний отросток изгибается внутрь ячейки и прижимается к внутреннему отростку, а затем резко разгибается вовне. Ячейка заполняется водой, вместе с которой поступает и пища, и тогда внешний отросток соединяется с соседней ячейкой, а внутренний открывается, чтобы пища могла попасть внутрь клетки.
Плавая в своих крохотных владениях, хайтикек начинает двигаться все медленнее и медленнее по мере того, как в воде уменьшается количество кислорода и питательных веществ, а пространство загрязняется отходами жизнедеятельности. В конце концов хайтикек впадает в подобие спячки, ожидая, пока очередная река не освободит его из этой «гробницы».
Размножаются хайтикеки делением: посредине клетки возникает волоконце, делящее ее пополам, а затем вдоль этого волоконца вырастают новые ячейки.
Как же вещества проникают из клетки в клетку в тканях двухмерного организма? Это поясняет приведенный ниже рисунок, на котором изображены две соседние клетки с точно совмещенными оболочками. Если внешние отростки двух соседних ячеек одновременно откроются, то эти ячейки смогут быстро обменяться содержащейся в них жидкостью. При одновременном открытии отростков внутри образовавшегося пространства создается крохотное круговое течение. Как только жидкости поменяются местами, внешние отростки закроются, а вместо них откроются внутренние отростки, отправляя содержимое ячейки внутрь клетки. В результате такого взаимодействия концентрация питательных веществ в соседних клетках А и В очень быстро станет одинаковой.
Еще одна важная биологическая функция связана с деятельностью нервной ткани. Сквозь стенки нервных клеток импульсы проходить не могут, потому что нервные клетки изолированы друг от друга, в отличие от мембран наших нервных клеток.
Но давайте представим себе, что двухмерные нервные клетки достаточно длинные и объединены в треугольную сеть с очень тонкими мембранами, разделяющими соседние клетки. Биолог Дэвид Кларк, выпускник Орегонского университета, заверил меня, что это идеальная рабочая структура, и что нервные импульсы в ней будут генерироваться вдоль общей мембраны и распространяться по зигзагообразной траектории.
Возможность распространения нервных импульсом приводит нас к еще более важному вопросу: а как эти импульсы смогут распространяться по пересекающимся траекториям в двухмерном мозге? Конечно, было бы неплохо, если бы они могли пересекаться так же, как пересекаются нервные волокна в трехмерном пространстве.
С этой проблемой легко справляется маленький набор из трех клеток. Два нервных импульса идут по волокнам А и В, но затем эти волокна расщепляются, и по каждой паре расщепленных волокон проходят копии изначального импульса.
На приведенной выше схеме один из каждой пары импульсов проходит через центральную клетку (1), а второй идет в боковую клетку (2 и 3). В каждой из этих трех клеток будет сгенерирован новый импульс и направлен по выходящему нервному волокну, но только в том случае, если по любому из входящих волокон поступил только один импульс. Если в клетку одновременно поступили два одинаковых импульса, дальше они не пройдут. По такой схеме нетрудно проследить, что если нервный импульс поступил по нервному волокну а, то через долю секунды он проследует дальше по выходящему нервному волокну а. То же самое справедливо и для нервного волокна b.
То есть, какими бы возможностями ни обладали арийские нейроны, похожи они на наши или нет, они без проблем смогут взаимодействовать друг с другом. Отсутствие третьего измерения их взаимодействию не мешает. Это утверждение более двадцати лет назад оспорил ученый Г. Дж. Уитроу, заявив, что именно по этой причине в двухмерном мире не может возникнуть разум. Конечно, это была всего лишь гипотеза, причем ошибочная.
Астрономия
В системе Шемса всего две планеты — Арде и Нагас, и это характерный пример, демонстрирующий, что в Планиверсуме планетарные системы обычно включают в себя меньшее число планет. Большие планетарные системы могут быть нестабильными из-за свойств гравитации и большей вероятности столкновения в двухмерном мире.
Как было сказано выше, орбита Арде представляет собой самопересекающуюся кривую. Ее нетрудно изобразить на компьютере, но формулу такой кривой мы так и не получили. Орбиты небесных тел в нашей вселенной представляют собой конические сечения, а именно: окружности, эллипсы, параболы или гиперболы. Все эти кривые описываются достаточно простыми формулами. Но я не знаю, как назвать кривую, по которой Арде движется вокруг Шемса, и не знаю формулу, которая эту кривую описывает. Двое ученых из исследовательского центра IBM имени Томаса Дж. Уотсона, Джон Лью и Дональд Куорлз-младший, классифицировали орбиты планет в Планиверсуме и предложили для их описания простые приблизительные формулы, но решение уравнений для определения точной формулы оказалось дьявольски сложной задачей.
По мнению Лью и Куорлза, орбиты планет в Планиверсуме описываются тремя параметрами: фазовым углом, размером и эксцентриситетом. Первые два параметра для нас сейчас не важны, а важен лишь эксцентриситет, определяющий форму орбиты. Эксцентриситет можно вычислить, определив отношение календарного года к звездному.
Замкнутая орбита — это такая орбита, при движении по которой планета возвращается на исходную траекторию после некоторого конечного числа оборотов вокруг звезды.
Все изображенные выше орбиты, за исключением окружности, имеют определенное количество «лепестков»: два, три, четыре и так далее. Незамкнутая орбита никогда сама себя не повторяет, и поэтому ее трудно нарисовать, ведь рисунок никогда не будет закончен. Именно по такой орбите Арде движется вокруг Шемса.