Книга Эволюция Вселенной и происхождение жизни - Пекка Теерикорпи
Шрифт:
Интервал:
Закладка:
Рис. 16.1. Роберт Бойль (1627–1691) рассматривал тепло как проявление движения частиц. В горячем газе скорости хаотически движущихся молекул в среднем больше, чем в холодном газе.
Впрочем, Джеймс Джоуль (1818–1889) пришел к таким же выводам независимо от Майера. Его искусные опыты с теплом, электричеством и механической работой были необходимы научной общественности для признания сохранения энергии. Этот богатый английский пивовар смог посвящать большую часть времени своему увлечению, сравнивая различные формы энергии.
Достижения химии.
В XVIII веке считалось, что горящее вещество теряет огненный элемент флогистон и что именно это служит причиной уменьшения свечи при горении. Заслуга в открытой истинной природы горения принадлежит Антуану Лорану Лавуазье, универсальному ученому, который был и математиком, и метеорологом, и геологом (рис. 16.2). В возрасте всего лишь 25 лет его избрали членом Академии наук в Париже. Примерно тогда же он получил удобную работу сборщика налогов. Химией он занялся позднее, когда работал в Королевском управлении пороха, где проводил различные опыты, в том числе — с горением фосфора и серы. Он обнаружил, что продукты сгорания весят больше исходного вещества и что эта разница как раз равна уменьшению веса воздуха. Лавуазье опознал активную составляющую воздуха и назвал ее кислородом. Флогистон теперь стал не нужен.
Рис. 16.2. Антуан Лоран Лавуазье (1743–1794) и его жена Мария Анна Пьеретта Польз (1758–1836). Она так тесно сотрудничала с мужем, что трудно отделить вклад одного из супругов от вклада в науку другого (картина Жака Луи Давида).
Свои результаты Лавуазье опубликовал в 1789 году в работе Traite Elémentaire de Chimie («Начальный курс химии»). В этом классическом труде он обобщил новую химическую теорию и разъяснил понятие элемента как простого вещества, которое невозможно расщепить никакими известными химическими методами. Там же была представлена теория того, как элементы формируют химические смеси, и утверждалось, что вещество не возникает и не исчезает (то есть масса сохраняется).
Лавуазье продолжал собирать налоги даже после начала Французской революции. В период Царства Террора он вместе с другими 27 сборщиками налогов был приговорен к смерти на гильотине и казнен 8 мая 1794 года в Париже. Не последнюю роль в этом сыграло и то, что несколькими годами ранее Лавуазье критиковал революционного лидера Жана-Поля Марата и его идеи о процессе горения.
После Лавуазье продолжались поиск и систематизация новых элементов. Наибольшую активность в этом проявили Жозеф Гей-Люссак (1778–1850) во Франции и Гемфри Дэви в Англии. Особое внимание они уделяли относительному количеству элементов, входящих в соединения. Стало понятно, что соединение всегда состоит из элементов в определенной пропорции. Например, чтобы получить 9 граммов воды (H2O), нужно 8 граммов кислорода (O) и 1 грамм водорода (H); только в такой пропорции не останется лишнего водорода или кислорода.
Этим химическая реакция отличается, скажем, от приготовления кекса, где не так уж важно, если мы смешиваем ингредиенты в не совсем точной пропорции: кекс будет иметь немного другой вкус, но он в любом случае остается кексом. Открытие химического закона постоянных отношений принадлежит шведскому химику Йёнсу Якобу Берцелиусу (1779–1848). Он показал, что неорганические вещества состоят из различных элементов в постоянной весовой пропорции. На основе этих результатов в 1828 году он составил таблицу относительных атомных весов, включающую в себя все известные к тому времени элементы. Эта работа свидетельствовала в пользу гипотезы атомов: химические соединения содержат атомы в целочисленных количествах. Для описания своих экспериментов он разработал систему химических знаков, в которой каждый элемент обозначался буквой, например, О — для кислорода, H — для водорода и т. д. Эту систему мы используем и сегодня.
Закон постоянных отношений помог Джону Дальтону (17661844) разработать теорию атомов. Он проводил исследования в разных областях науки — от метеорологии до физики, но теория атомов пробудила в нем интерес к химии. В своей «Новой системе химической философии» (1808) Дальтон утверждал: «Подобные наблюдения[5] привели всех к молчаливому соглашению, что тела, обладающие заметной величиной, будь они жидкими или твердыми, состоят из громадного числа необыкновенно маленьких частиц, или атомов вещества, удерживаемых вместе силой притяжения…» И далее он писал: «Следовательно, мы должны заключить, что мельчайшие частицы любого однородного тела совершенно похожи друг на друга по весу, по форме и т. п. Иными словами, каждая частица воды похожа на все другие частицы воды; каждая частица водорода похожа на любую другую частицу водорода и т. д.». Однако он признавал, что атомы различных элементов разные и имеют разный вес.
Дальтон жил на доходы от работы учителем в Манчестере. В 1800 году он стал секретарем Манчестерского литературно-философского общества и продолжал давать уроки, как в школе, так и частным образом. Позже его избрали президентом Философского общества, и эту почетную он должность занимал вплоть до смерти.
Согласно Дальтону, атомы в химическом соединении объединяются друг с другом всегда одинаковым образом. Это порождает новые идентичные комбинации атомов, которые теперь называются молекулами. Отсюда следует закон постоянных отношений: эти пропорции заложены уже в молекулах. Мы знаем, что два атома Н, соединяясь с одним атомом О, образуют воду Н2O. Но представления Дальтона о том, как из атомов сложены молекулы, часто были ошибочными.
Правильные химические формулы и атомные веса были найдены после того, как в 1808 году Гей-Люссак установил, что элементы объединяются не только в данном весовом соотношении, но также в данном отношении объемов в том случае, если элементы находятся в газообразном состоянии. Например, 2 литра водорода и 1 литр кислорода всегда дают 2 литра водяного пара (а не три!). Правило Гей-Люссака объяснил профессор физики Туринского университета Амедео Авогадро (1776–1856). В 1811 году он опубликовал статью о различиях между молекулой и атомом, указав, что Дальтон пере-путал понятия атомов и молекул. «Атомы» водорода и кислорода Дальтона на самом деле являются «молекулами», каждая из которых содержит по два атома — Н2 и О2. Таким образом, две молекулы водорода могут объединиться с одной молекулой кислорода, чтобы образовать две молекулы воды.
Авогадро предположил, что одинаковые объемы любых газов при одинаковых температуре и давлении содержат одинаковое число молекул; теперь это называют законом Авогадро. Используя это правило, мы можем сразу догадаться, что молекула воды содержит два атома водорода на каждый атом кислорода, то есть химическая формула воды — Н2O. Если добавить к этому, что отношение весов кислорода и водорода в молекуле воды 8:1 = масса одного атома О, деленная на массу двух атомов Н, то получим, что О/Н = 16, то есть, что вес атома кислорода в 16 раз больше веса атома водорода.