Книга Истина и красота. Всемирная история симметрии - Йен Стюарт
Шрифт:
Интервал:
Закладка:
Тонким законом является закон ассоциативности, который гласит, что при перемножении трех чисел в одном и том же порядке не имеет значения, с какого умножения начать. Допустим, нам надо перемножить 2×3×5; можно начать с умножения 2×3, что дает 6, а далее умножить 6 на 5. Альтернативным образом можно сначала перемножить 3×5, что есть 15, а далее умножить 2 на 15. Оба способа действий приводят к одному и тому же результату — числу 30. Закон ассоциативности утверждает, что так происходит всегда; в символьной форме он говорит нам, что (ab)c = a(bc), где скобки показывают очередность, в которой надо выполнять умножение. Это свойство снова выполнено и для вещественных, и для комплексных чисел, и доказать это можно, используя формулы Гамильтона.
Последнее, очень полезное правило — назовем его законом деления, хотя в учебниках вы найдете его под именем «существование мультипликативного обратного» — утверждает, что всегда можно поделить любое число на любое ненулевое число. Имеются веские основания для запрета деления на нуль; основная причина состоит в том, что это действие редко бывает осмысленным.
Мы уже видели, что можно соорудить алгебру троек чисел, используя «очевидное» умножение. Эта система удовлетворяет законам коммутативности и ассоциативности. Но не закону деления.
Великий взлет мысли Гамильтона, произошедший после долгих часов бесплодных поисков и вычислений, привел к следующему осознанию: можно образовать новую числовую систему, в которой и закон ассоциативности, и закон деления выполнены, но необходимо пожертвовать законом коммутативности. Но даже тогда подобное нельзя сделать с тройками вещественных чисел. Надо использовать четверки. Нет «разумной» трехмерной алгебры, но имеется довольно приемлемая четырехмерная. Это единственная алгебра такого типа, и до идеала ей не хватает только одного — закона коммутативности.
Важно ли это? Ход мыслей Гамильтона был надолго заблокирован твердым убеждением в необходимости закона коммутативности. Все изменилось в одно мгновение, когда, чем-то внезапно вдохновленный, он понял, как перемножать четверки чисел. На календаре было 16 октября 1843 года. Гамильтон шел с женой по тропинке вдоль Королевского Канала, направляясь на собрание престижной Королевской Ирландской академии в Дублине. Его бессознательное, должно быть, кружило вокруг задачи о трехмерной алгебре, потому что внезапно его пронзило озарение. «Там и тогда я почувствовал гальванизирующий ток от приближающейся мысли, — писал он позднее в письме, — и искры, произведенные им, представляли собой фундаментальные уравнения между i, j, k, причем в точности такие, какие я с той поры всегда и использую».
Гамильтон находился под таким впечатлением, что немедленно нацарапал формулы на каменной кладке моста Брумбридж. Мост сохранился до наших дней, но нацарапанное на нем — нет, хотя там и имеется памятная доска[42]. Формулы
i2 = j2 = k2 = ijk = −1
также пережили своего создателя.
Это очень симпатичные формулы, обладающие высокой симметрией. Но читателю, должно быть, не терпится спросить — при чем же здесь четверки чисел?
Комплексные числа можно записать как пары (x, y), хотя обычно их записывают в виде x +iy, где i = √−1. В том же духе числа, о которых говорил Гамильтон, можно записывать или в виде четверок (x, у, z, w), или как комбинацию x + iу + jz + kw. Формулы Гамильтона относятся ко второму способу обозначений; если же у вас формальное умонастроение, то вы, возможно, этой записи предпочтете представление в виде четверок чисел.
Гамильтон назвал свои новые числа кватернионами. Он доказал, что они подчиняются закону ассоциативности и — замечательным, как стало ясно позднее, образом — закону деления. Но не закону коммутативности. Из правил умножения кватернионов следует, что ij = k, но ji = −k.
Система кватернионов содержит экземпляр комплексных чисел — кватернионы вида x + iy. Из формул Гамильтона видно, что −1 имеет не просто два квадратных корня i и −i, а кроме того, еще и j, −j, k и −k. На самом деле в кватернионной системе имеется бесконечно много различных квадратных корней из минус единицы.
Таким образом, вместе с потерей закона коммутативности мы также потеряли правило, что квадратное уравнение имеет два решения. По счастью, ко времени изобретения кватернионов основное внимание в алгебре сместилось в сторону от решения уравнений. Преимущества кватернионов существенно перевесили их недостатки. К ним просто требовалось привыкнуть.
В 1845 году Томас Дизни заехал к Гамильтону вместе со своей дочерью Кэтрин — юношеским увлечением Уильяма. К тому моменту она успела потерять первого мужа и выйти замуж вторично. Встреча разбередила старую рану, и зависимость Гамильтона от алкоголя сделалась более серьезной. Один раз он напился и выставил себя таким полным дураком на научном обеде в Дублине, что после этого зарекся пить и в течение последующих двух лет пил только воду. Однако когда астроном Джордж Эйри начал посмеиваться по поводу его воздержания, Гамильтон принялся в ответ поглощать алкоголь в усиленных количествах. С того времени он стал хроническим алкоголиком.
Два его дяди скончались, а друг и коллега совершил самоубийство; затем Кэтрин принялась писать ему письма, что только усугубило его депрессию. Она быстро поняла, что ее действия не подобают респектабельной замужней женщине, и вяло попыталась покончить с собой, а затем разъехалась с мужем и перебралась к матери.
Гамильтон продолжал отправлять Кэтрин письма через ее родственников. В 1853 году она решила возобновить общение, послав ему небольшой подарок. Ответный шаг Гамильтона состоял в том, что он отправился к ней с визитом, захватив экземпляр своей книги о кватернионах. Две недели спустя она умерла. Гамильтон был убит горем. Его жизнь становилась все более и более беспорядочной; после его смерти, последовавшей в 1865 году (как полагали, от подагры, которой часто страдают тяжелые пьяницы), его математические статьи были найдены вперемешку с мусором и объедками.
Гамильтон был убежден в том, что кватернионы — это Святой Грааль алгебры и физики, истинное обобщение комплексных чисел на высшие размерности, а также ключ к геометрии и физике в пространстве. Разумеется, пространство имеет размерность три, тогда как кватернионы — четыре, но Гамильтон обратил внимание на естественную подсистему размерности три.