Книга Полеты богов и людей - Юрий Никитин
Шрифт:
Интервал:
Закладка:
24 июня 1802 года Гумбольдт и Бомплан поднялись в небо с целью измерения температуры и давления воздуха. Их аэростат достиг высоты 5878 м. В 1803 году физик Робертсон провел исследование электрических явлений в атмосфере на высотах 7000 м/16/.
Не было еще способов управления аэростатами в горизонтальной плоскости. При любом ветре они превращались в неуправляемую «игрушку стихии». Эту малопривлекательную особенность аэронавты окрестили термином «свободный полет». Решая задачу управления полетом в 1852 году, французский инженер-механик А. Жоффар создал первый оборудованный механическим двигателем аэростат. А. Жоффар установил на нем паровую машину весом 48 кг и мощностью 2,2 кВт. Скорость полета аэростата с мягкой оболочкой в безветренную погоду составила 3 м/сек. В 1880 году немецкий инженер Г. Вельшфорт установил на аэростат бензиновый двигатель, а в 1883 году французы братья Гастон и Альберт Тиссандье оборудовали аэростат (рис. 5) электродвигателем мощностью 1,5 кВт. Вес питающей его аккумуляторной батареи был 220 кг, скорость 4 м/сек. При столь малых скоростях аэростаты по-прежнему не имели возможности двигаться против ветра, но двигатель с движителем в виде винта наделил их небольшой скоростью и возможностью совершать в тихую погоду полеты в требуемом для аэронавтов направлении/17/. «Свободный полет», как основная характеризующая первые аэростаты общая их особенность, с установкой двигателей постепенно сходит на нет.
Рис. 5. Дирижабль Гастона и Альберта Тиссандье с электрическим двигателем (октябрь 1883 г.) из книги А. Е. Тараса «Дирижабли на войне»
5 сентября 1862 года англичане Плешер и Коксуэлл на высоте 8000 м потеряли создание. Аэростат поднялся до высоты 11 300 м. Через два часа аэронавты приземлились. Температура на достигнутых высотах была от —30 до —40 °C. Их спасла теплая одежда.
В 1874 году французские воздухоплаватели Сивель и Кроче-Спинелли, готовясь к высотному полету, посетили в Париже физиолога П. Бера. Он предложил им в качестве предварительной тренировки подвергнуть себя в барокамере действию низких давлений, соответствующих высоте задуманного предприятия в 6900 м. Для предупреждения кислородного голодания П. Бер снабжает их резиновыми мешками с кислородом. 22 марта 1874 года исследователи с двумя типами дыхательных смесей отправляются в полет. В одном мешке дыхательная смесь состояла из 40 % кислорода и 60 % азота, в другом — 70 % кислорода и 30 % азота. До высоты 5400 м они использовали первую смесь, далее перешли на вторую. Полет завершился успешно. Это было, по сути, первое в мировой практике научно обоснованное при высотных полетах применение кислорода для предупреждения кислородного голодания. Но научные рекомендации не пошли на пользу. Воздухоплаватели переоценили личный опыт.
15 апреля 1875 года Кроче-Спинелли, Сивель и Тиссандье приступили к осуществлению очередного сверхвысотного подъема до высоты 8000 м Для предупреждения кислородного голодания они решили использовать дыхательную газовую смесь, содержащую 72 % кислорода и 28 % азота. Запасы дыхательной газовой смеси поместили в три индивидуальных надувных резиновых мешка сферической формы емкостью по 150 литров. По одному мешку на каждого пилота Кислород был дорог. Воздухоплаватели посчитали возможным пользоваться кислородом только при крайней необходимости. Поль Бер предупредил письмом, что такого запаса кислорода для полета недостаточно. В воздухе разыгралась жестокая трагедия. Когда аэронавты почувствовали наступление общей слабости, то воспользоваться кислородом уже не смогли — развился скоротечный паралич. Шар поднялся на высоту 8000 м и самопроизвольно опустился. Пилоты потеряли сознание. В живых остался только Тиссандье/18/. На рис. 6 можно видеть высотное кислородное оборудование образца 1875 года.
Рис. 7. Тиссандье и его спутники Сивель и Кроне-Спинелли во время подъема на воздушном шаре (15 апреля 1875 г.). Сивель сбрасывает балласт, Тиссандье следит за показаниями барометра, Кроче-Спинелли вдыхает кислород
Первый управляемый аэростат Жоффара, хотя был и тихоходным и несовершенным, однако получил право называться первым дирижаблем. Управляемое воздухоплавание закономерно оттеснило аэростаты свободного полета с престижных первых позиций. «В 1909 г. успехи изобретателя жесткого дирижабля графа Фердинанда фон Цеппелина, чьи инициативы получили поддержку кайзера Вильгельма II и имперского парламента, начали рассматриваться публикой как престиж Германии».
Его дирижабль LZ-5 выполнил все требования военных и был принят на вооружение. В преддверии Первой мировой войны в Германии было сформировано 5 воздухоплавательных батальонов, в составе которых было 11 дирижаблей. В начале войны (рис. 7) низкие летно-технические характеристики истребительной авиации союзников с потолком 2100–3000 м позволяли дирижаблям легко уходить от преследования.
Рис. 7. Истребители союзников
Но уже в середине войны самолеты истребительной авиации получают возможность атаковать дирижабли сверху. В 1916 году новые высотные двигатели позволили дирижаблям забираться на высоту 5400 м. Высота 5000 м стала высотой, на которой они имели возможность преодолевать заграждения английской ПВО.
Низкие температуры порядка —40 °C и недостаток добротных кислородных приборов потребовали создания для пилотов специальной теплой одежды с муфтами для согревания рук. Кислородное голодание изнуряло экипажи Морально и физически и вело к оттоку личного состава с легко уязвимых теперь тихоходных воздушных мастодонтов. Ситуация несколько улучшилась с появлением кислородного снаряжения с мундштуками и масками для дыхания, но ненадолго. Еще во время мировой войны дирижабли по сравнению с самолетами были признаны неэффективными и из-за нехватки легкого и прочного дюралюминия для изготовления самолетов были списаны из действующих частей и разобраны на металл/19/.
В дальнейшем «…высоты в 3500 м были в авиации приняты как граница, выше которой надлежало пользоваться кислородными приборами. На высотах до 8000–9000 м, где атмосферное давление в пределах 200 мм рт. ст., для дыхания можно было пользоваться смесью кислорода с воздухом При полетах на высотах более 9000 м — только чистый кислород. Высота 12 000 м стала границей полетов с кислородным оборудованием в открытой кабине. При полетах в герметичной кабине самолета на случай разгерметизации кабины предусматривалась возможность подачи кислорода в маску с избыточным давлением, которое дополнительно обеспечивало герметичное прилегание маски к лицу/20/. «Универсальным средством создания нормальных условий для жизнедеятельности экипажа в случае разгерметизации кабины на больших высотах стал скафандр. Скафандр герметичен. В нем используется равномерно распределенное пневматическое обжатие тела, что благоприятно сказывается на физиологическом состоянии человека. Допустимая продолжительность полета в скафандре уже исчисляется не минутами, а часами»/21/.