Книга Почему Е=mc?? И почему это должно нас волновать - Джефф Форшоу
Шрифт:
Интервал:
Закладка:
Это важно, поэтому давайте обсудим все более подробно. Мы уже установили, что в случае принятия специальной аристотелевской сетки координат, охватывающей всю Вселенную, движение относительно этой сетки можно было бы определить как абсолютное. Мы также утверждаем, что, поскольку провести эксперимент, который позволил бы нам определить, находимся мы в движении или нет, невозможно, мы должны отбросить идею такой сетки – просто потому, что никогда не сможем выяснить, к чему она должна быть привязана. Но как же тогда вычислить абсолютное положение объекта? Иными словами, где наше место во Вселенной? Без концепции сетки координат Аристотеля эти вопросы не имеют научного смысла. Все, о чем мы можем говорить, – это позиции объектов относительно друг друга. Таким образом, способа определить абсолютное положение в пространстве не существует, а значит, и само понятие абсолютного пространства не имеет смысла. Представление о Вселенной как о гигантском ящике, в котором движутся различные объекты, не предполагает экспериментального подтверждения. Переоценить важность этих рассуждений невозможно. Великий физик Ричард Фейнман[4] однажды заметил, что независимо от того, насколько красива ваша теория и насколько вы умны или известны, если она не согласуется с экспериментом, она неверна. Это утверждение – ключевое в науке. Если взглянуть на него с другой стороны, то можно сказать, что если некая концепция не поддается проверке экспериментальным путем, что не позволяет убедиться в ее достоверности, то такая концепция в любом случае лишена значимости. Конечно, это не мешает нам стоять на своем и продолжать продвигать свою идею, но опасность такого предположения заключается в том, что мы рискуем воспрепятствовать будущему развитию науки, придерживаясь предвзятого мнения. Следовательно, из-за отсутствия каких-либо возможных средств определения специальной координатной сетки мы освобождаемся от понятия абсолютного пространства, подобно тому как избавились от концепции абсолютного движения. Что же дальше? Освобождение от оков абсолютного пространства сыграло решающую роль в разработке Эйнштейном теории пространства и времени, но это подождет до следующей главы. Пока же мы просто получили свободу, но еще не воспользовались ею. Чтобы подогреть интерес, давайте лишь укажем, что при отсутствии абсолютного пространства нет никаких причин, почему два наблюдателя должны обязательно видеть одинаковый размер объекта. Что вас действительно поразит, так это то, что диаметр мячика четыре сантиметра без абсолютного пространства может таким и не быть.
Пока что мы рассматривали некоторые детали взаимосвязи между движением и пространством. А что можно сказать о времени? Движение выражается как скорость, а скорость может быть измерена в километрах в час, то есть как расстояние, пройденное в пространстве за определенный промежуток времени. Таким образом, понятие времени уже фактически вошло в наши рассуждения. Что же мы можем сказать о времени? Есть ли какой-то эксперимент, который мог бы доказать, что время абсолютно, или мы должны отбросить и эту, еще более глубоко укоренившуюся концепцию? Хотя Галилей отверг понятие абсолютного пространства, в его рассуждениях нет ничего, что объяснило бы нам концепцию абсолютного времени. Согласно Галилею, время неизменно. То есть мы можем представить себе маленькие идеальные часы, синхронизированные таким образом, чтобы показывать одно и то же время в любой точке Вселенной. Одни часы могут быть на самолете, другие на Земле, третьи (очень прочные) на поверхности Солнца, еще одни – на орбите вокруг далекой галактики. При условии, что эти часы – идеальные приборы для измерения времени, они показывают одно и то же время – ныне и вовеки веков. Удивительно, но это на первый взгляд очевидное предположение вступает в прямое противоречие с утверждением Галилея о том, что эксперимент не может нам сказать, находимся ли мы в состоянии абсолютного движения. Каким бы невероятным это ни казалось, экспериментальные доказательства, окончательно уничтожившие понятие абсолютного времени, получены в ходе экспериментов, которые многие из нас помнят по школьному курсу физики: батарейки, провода, двигатели и генераторы. Чтобы разобраться в понятии абсолютного времени, нам придется вернуться в XIX столетие, золотой век открытия электричества и магнетизма.
Майкл Фарадей, сын йоркширского кузнеца, родился в Южном Лондоне в 1791 году. Он был самоучкой, бросившим школу в 14 лет, чтобы стать учеником переплетчика, но удача улыбнулась ему на научном поприще. Это случилось после посещения в 1811 году в Лондоне лекции корнуоллского ученого сэра Гемфри Дэви. Фарадей отправил Дэви заметки, которые делал на лекции, и тот был настолько ими поражен, что предложил Фарадею место ассистента. С этого началась карьера одного из столпов науки XIX столетия и величайшего физика-экспериментатора всех времен. Дэви говорил, что Фарадей – его крупнейшее научное открытие.
Ученые XXI столетия с завистью оглядываются на события начала XIX века. Фарадею не надо было сотрудничать с 10 тысячами ученых и инженеров в CERN[5] или запускать на орбиту телескоп размером с два автобуса, чтобы сделать выдающиеся открытия. CERN Фарадея вполне помещался на его столе и позволял ему вести наблюдения, приведшие к разрушению понятия абсолютного времени. Безусловно, за многие столетия масштаб науки изменился – отчасти потому, что те аспекты окружающего мира, которые не требуют высокотехнологичного оборудования для проведения наблюдений, уже досконально изучены. Нельзя сказать, что в современной науке нет примеров, когда простые эксперименты дают важные результаты, но в общем случае, чтобы раздвинуть границы познания, нужна сложная техника. В Лондоне начала викторианской эпохи Фарадею не требовалось ничего более экзотического или дорогого, чем моток проволоки, магниты и компас, чтобы получить первые экспериментальные доказательства того, что время представляет собой совсем не то, чем нам кажется. Он собрал их, занимаясь тем, что больше всего нравится ученым, – просто работал с недавно открытым электричеством, играл с ним и внимательно наблюдал. Вы можете представить эти темные лакированные столы с тенями от проводов, колеблющимися в свете газовых ламп. Хотя Дэви и поразил публику демонстрацией электрического света в 1802 году в Королевском институте, миру пришлось ждать почти до конца столетия, пока в 1870 году Томас Эдисон не создал пригодную для применения лампочку накаливания. Но в начале XIX века электричество было совершенно новой областью физики и инженерного дела.
Фарадей обнаружил, что если двигать магнит через катушку провода, то во время перемещения магнита в проводе генерируется электрический ток. Он также заметил, что если передать импульс электрического тока по проводу, то стрелка компаса, расположенного вблизи этого провода, отклонится от равновесного состояния. Компас представляет собой не более чем детектор магнитного поля. При отсутствии электрических импульсов в проволоке он выравнивается по направлению магнитного поля и указывает на северный полюс Земли. Таким образом, электрические импульсы создают магнитное поле, такое же, как и магнитное поле Земли, хотя и более мощное – поскольку оно сильно отклоняет стрелку компаса во время прохождения импульса электрического тока. Фарадей понял, что обнаружил глубинную связь между магнетизмом и электричеством, двумя явлениями, которые на первый взгляд кажутся абсолютно не связанными друг с другом. Что общего у электрического тока, проходящего через лампочку, когда вы щелкаете выключателем на стене в гостиной, с силой, притягивающей магнитные игрушки к двери вашего холодильника? Безусловно, такая связь неочевидна, но все же Фарадей посредством внимательных наблюдений установил, что электрический ток создает магнитное поле, а движущиеся магниты генерируют электрический ток. Эти два простых явления, которые сегодня известны как электромагнитная индукция, лежат в основе как производства электроэнергии на всех электростанциях, так и работы любых электродвигателей, используемых нами каждый день, – от компрессора в холодильнике до механизма извлечения диска в DVD-плеере. Вклад Фарадея в развитие индустриального мира трудно переоценить.