Книга Тонкая физика. Масса, эфир и объединение всемирных сил - Фрэнк Вильчек
Шрифт:
Интервал:
Закладка:
Высшая симметрия, которая объединяет основные частицы, также предсказывает равенство между различными основными взаимодействиями. Это предсказание на первый взгляд совершенно неверно. Однако, когда мы введем поправку на искажающий эффект от флуктуаций Сетки, оно становится ближе к истине.
Мы слышали песнь сирены об объединении. Теперь пришло время открыть глаза и посмотреть, сможем ли мы ориентироваться среди скалистых берегов, где она обитает.
Усовершенствованная симметрия объединения многое объясняет. Она собирает разрозненные фрагменты Центральной теории в соразмерное целое. Тем не менее, как только наше зрение отойдет от первого ослепительного впечатления и мы посмотрим более внимательно, нам многое покажется неправильным.
На самом деле неправильным кажется что-то фундаментальное. Если сильное, слабое и электромагнитное взаимодействия являются аспектами общего основного мастер-взаимодействия, то симметрия требует, чтобы все они обладали одинаковой силой. Но они ею не обладают. Это показано на рис. 18.1.
Рис. 18.1. Идеальная симметрия требует того, чтобы сильное, слабое и электромагнитное взаимодействия имели одинаковую силу. Они ее не имеют. Для дальнейшего удобства здесь я использовал обратный квадрат связей в качестве количественной меры их относительной мощности. Таким образом, сильное взаимодействие, которое является самым мощным, указано внизу
Существует причина, по которой сильное взаимодействие называется сильным, а электромагнитное взаимодействие — нет. Сильное взаимодействие действительно сильнее! Одним из проявлений этого различия является то, что атомные ядра, связанные сильным взаимодействием, намного меньше атомов, которые удерживаются вместе электромагнитными силами. Сильное взаимодействие удерживает ядра более плотно.
Математика Центральной теории позволяет определить точную числовую меру относительной силы разных взаимодействий. Каждое из ее взаимодействий — сильное, слабое, электромагнитное — имеет то, что мы называем параметром связи или просто связью.
В терминах фейнмановских диаграмм эта связь является коэффициентом, на который мы умножаем каждый узел. (Эти универсальные общие коэффициенты связи следуют сразу за чисто численными значениями цветных или электромагнитных зарядов соответствующих частиц, как они закодированы в записях кредитного счета.) Поэтому каждый раз, когда в узле появляется цветной глюон, мы умножаем вклад изображенного процесса на сильную связь; каждый раз, когда появляется фотон, мы умножаем на электромагнитную связь. Базовая электромагнитная сила возникает из-за обмена фотона (см. рис. 7.4), поэтому она имеет квадрат электромагнитной связи. Аналогично базовое сильное взаимодействие возникает из-за обмена глюона, поэтому оно имеет квадрат сильной связи.
Полная симметрия между силами требует того, чтобы каждый узел был связан с любым другим. Это не допускает разницы между связями. Таким образом, наблюдаемые различия создают серьезную проблему для всей идеи объединения посредством симметрии.
Важный урок Центральной теории состоит в том, что сущность, которую мы воспринимаем в качестве пустого пространства, на самом деле является динамичной средой, обладающей структурой и полной активности. Сетка, как мы ее назвали, влияет на свойства того, что в ней находится, то есть всего. Мы видим вещи не такими, какие они есть, а будто сквозь стекло, нечетко. В частности, Сетка кипит виртуальными частицами, и они могут экранировать или антиэкранировать источник. Этот феномен для сильного взаимодействия был центральной идеей повествования в частях I и II. Он имеет место и для других видов взаимодействия.
Таким образом, значения связей, которые мы видим, зависят от того, как мы смотрим. Если мы посмотрим невнимательно, то не сможем различить основные источники, поскольку их изображение будет искажено Сеткой. Другими словами, мы увидим основные источники, смешанные с окружающим их облаком виртуальных частиц. Чтобы судить о том, имеют ли место совершенная симметрия и единство сил, мы должны внести поправку на искажения.
Чтобы разобраться в основах, нам, вероятно, потребуется разрешение очень коротких расстояний и временных интервалов. Этот урок повторялся не раз, начиная с ван Левенгука и его микроскопов и заканчивая Фридманом, Кендаллом и Тейлором, использующими ультрастробоскопический наномикроскоп в Стэнфордском центре линейного ускорителя, чтобы заглянуть внутрь протонов, а также экспериментаторами, использующими машину творческого разрушения БЭПК для изучения Сетки. Как мы видели в связи с этими двумя недавними проектами, для определения чрезвычайно коротких расстояний и временных интервалов, на которых в игру вступает квантовая теория, необходимо использовать зонды, которые активно передают большие количества энергии и импульса исследуемому объекту. Именно поэтому ускорители высоких энергий, несмотря на затраты и сложность, являются инструментами выбора.
Как мы обсуждали в главе 16, облака виртуальных частиц могут увеличиваться медленно. Чтобы облако вокруг кварка выросло из умеренной затравки до угрожающих размеров, оно должно увеличиться с планковской длины до размера протона, то есть в 1018 раз!
Учитывая этот опыт, мы не должны удивляться, если обнаружим: чтобы добраться до основ, то есть расстояний, на которых может происходить объединение сил, нам может потребоваться передача немыслимых объемов импульса и энергии. Мощнейший ускоритель БАК обеспечит нам в десять раз лучшее разрешение, то есть разрешение с коэффициентом, равным 101, при затратах, составляющих около 10 миллиардов евро. Далее все становится сложнее.
Поэтому мы должны использовать свой мозг. Хотя он и не очень надежен, но относительно дешев и всегда под рукой (так сказать). Несколькими росчерками пера мы можем рассчитать эффекты искажения Сетки и внести соответствующие поправки.
Результат показан на рис. 18.2.
Рис. 18.2. Внесение поправок с учетом искажений Сетки с целью проверить, объединяются ли силы. Когда мы выстраиваем объекты так, что обратные связи, возведенные в квадрат, располагаются по вертикали в восходящем порядке и обозначаются более понятным термином — «нисходящая мощность», а по горизонтали располагаются значения логарифма энергии, или (что то же самое) обратного расстояния, скорректированные связи, рассматриваемые со все увеличивающимся разрешением, создают прямые линии. О величине погрешностей эксперимента можно судить по ширине линий. Это почти работает, но не совсем