Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Книги » Домашняя » О чем говорят цифры. Как понимать и использовать данные - Ким Хо 📕 - Книга онлайн бесплатно

Книга О чем говорят цифры. Как понимать и использовать данные - Ким Хо

272
0
Читать книгу О чем говорят цифры. Как понимать и использовать данные - Ким Хо полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 48 49 50 ... 58
Перейти на страницу:

Но каким должен быть уровень подготовки студента, чтобы убедить стипендиальную комиссию в том, что он сможет принимать участие в научных исследованиях и потому заслуживает положительного решения? Вспомним о наших шести шагах количественного анализа и попробуем в этом контексте обсудить ведущую роль профессоров и их сотрудничество со студентами старших курсов (рис. 6.2).


Рис. 6.2. Сможет ли Нури претендовать на стипендию? Шесть шагов количественного анализа


На этапе определения проблемы обычно принимается решение о выборе темы исследования, которая имеет шансы на публикацию в научном журнале. Как правило, ведущую роль в этом играют профессора. На этапе изучения предыдущих поисков следует обосновать актуальность и новизну исследования по сравнению с ранее проводившимися. На этом этапе ведущую роль также играют профессора.

Они же обычно определяют, какие данные следует собрать. Студенты старших курсов помогают в сборе данных и их анализе. Как правило, эти функции поручаются студентам потому, что они требуют много времени и труда. Таким образом, шансов на получение стипендии гораздо больше, если, во-первых, студент способен понять, почему именно эта тема выбрана для исследования и какие методы будут использованы; во-вторых, он может продемонстрировать умение собирать данные и анализировать их под наблюдением профессора. Наконец, профессора обычно пишут статью в журнал на основе собранных студентами данных.

Чтобы подготовиться к подаче заявления на стипендию, Нури записалась на вводный курс по статистике и исследовательским методам. Для углубленного изучения ключевых концепций в этой области Джин Хо и Нури провели сессию вопросов и ответов, а также обсуждение материала каждой главы базовых учебников. Она также прошла интенсивную программу изучения статистической программы SPSS, чтобы получить навыки анализа данных. Наконец, Джин Хо и Нури вместе прочли последние двадцать статей, опубликованных в ведущих научных журналах коммуникационной сферы, затем критично оценили их основные положения, методы исследования, использованные данные, методику проведенного анализа и особенности интерпретации их результатов. Это помогло Нури получить ясное представление, как изученные в ходе трех курсов понятия и концепции применяются в реальном научном исследовании. К концу года Нури настолько овладела исследовательскими навыками, что могла и была готова ассистировать профессору практически в любом исследовании.

Свои цели и уровень подготовки Нури описала в разделе «Цели и задачи обучения» заявления о зачислении на магистерскую программу и выиграла стипендию от Висконсинского университета. Там, благодаря полученной подготовке, Нури работала с несколькими профессорами, готовя статьи к публикации. Позднее она получила приглашение в аспирантуру Стэнфордского университета и сейчас занимается подготовкой диссертации. Младшая дочь Джин Хо – Юнгри пошла по стопам сестры и получила приглашение в аспирантуру Мичиганского университета. Она работает в химико-технологической лаборатории.

Пример аналитического мышления: Дэрил Мори и Шейн Баттье из Houston Rockets

Этот пример посвящен двум менеджерам профессионального баскетбола, овладевшим количественным подходом. Дэрил Мори – генеральный директор баскетбольной команды НБА Houston Rockets. Тем, кто знаком с книгой и одноименным фильмом Moneyball, Мори известен под кличкой Билли Бин профессионального баскетбола[104]. Он окончил колледж по специальности «Статистика и компьютерные науки» на Северо-Западе США, а затем получил степень MBA от Слоановской школы бизнеса при Массачусетском технологическом университете. Он всегда стремился применить идеи Билли Джеймса о бейсбольной статистике к другим видам спорта. Затем он стал старшим вице-президентом по информационным системам и операциям клуба Boston Celtics. В 35 лет он возглавил клуб Houston Rockets и внедрил целый ряд статистических и количественных методов для улучшения результатов команды. Дэрил – председатель ежегодной Конференции по спортивной аналитике в Массачусетском технологическом университете, на которую собираются около двух тысяч участников.

Шейн Баттье – форвард NBA, в настоящее время играет за Miami Heat. В 2006–2011 годы он играл за Houston Rockets. Он отличался выдающимися аналитическими способностями как игрок и занимал седьмую позицию в рейтинге самых интеллектуальных игроков профессионального спорта по версии журнала Sporting News[105]. В статье Moneyball Майкла Левиса Дэрил Мори говорит, что Баттье

…получал специальный подбор данных. «Он единственный игрок, которому мы их предоставляли, – говорит Мори. – Они обрушивались на него, как вода из пожарного шланга, но он ухитрялся фильтровать их и извлекать полезные выводы. Большинство игроков в этом плане напоминают игроков в гольф – вы не хотите, чтобы они двигались, пока не решат, куда ударить». Данные классифицировались по ряду категорий, и рассчитывалась вероятность забрасывания мячей из разных точек поля, при разной степени активности обороны противника, при разных видах взаимодействия с другими игроками: насколько удачно он забрасывает из-за заслона, после обводки игрока соперника, броском сразу после принятия мяча и т. п. Баттье извлек много полезного из данных об игроках, которых должен был опекать на поле[106].

Тем не менее, полезность Баттье для его команды не была бесспорной, и об этом нам говорит количественный анализ.


Определение и формулирование проблемы. Должна ли Houston Rockets купить такого игрока, как Баттье, даже если его индивидуальная статистика не столь впечатляющая?


Изучение предыдущих поисков решения. Спортивная аналитика получает все большее распространение, и существует множество книг (и еще больше сайтов) на эту тему. Но такой анализ провести намного легче в тех видах спорта, где индивидуальная статистика игрока непосредственно влияет на результат команды. В баскетболе оценить эффективность действий команды в целом и взаимодействие игроков намного сложнее. Баттье имел относительно невысокие индивидуальные показатели (в течение пяти лет выступлений за команду Memphis Grizzlies он в среднем приносил команде 10 очков за игру всего при пяти подборах мяча). Однако его команда и партнеры, казалось, действовали лучше, иногда намного лучше, когда он был на площадке.


Моделирование (выбор переменных). Переменными при решении вопроса о приобретении такого игрока, как Баттье, будут его стоимость (непосредственно или в обмен на других игроков), аванс, который потребуется выплатить вперед, разнообразные показатели индивидуальных действий и, в идеале, некоторые показатели эффективности деятельности команды в то время, когда Баттье находился на площадке, и в то время, когда его не было.

1 ... 48 49 50 ... 58
Перейти на страницу:
Комментарии и отзывы (0) к книге "О чем говорят цифры. Как понимать и использовать данные - Ким Хо"