Книга Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем - Петер Шпорк
Шрифт:
Интервал:
Закладка:
Результат исследования, упоминавшийся выше и говоривший о том, что вес новорожденных, которых вынашивали в голодное время, был заметно ниже нормы, Ламбер Люмэ опубликовал уже в 1992 году. Это не произвело сильного впечатления на научное сообщество, поскольку легко объяснялось дефицитом питания. Гораздо большей сенсацией стало наблюдение, что дети в дальнейшей жизни чаще и раньше, чем в среднем, начинали страдать от старческих недугов, отличались относительно низким ростом и меньшей продолжительностью жизни. На этом я уже подробно останавливался.
Настоящее изумление — частично даже неприятие — вызвало следующее утверждение эпидемиолога, опубликованное в 1997 году. Дети голодной зимы, слишком мало весившие после рождения, в свою очередь, тоже производили на свет очень мелких детей, хотя давно уже жили в условиях изобилия, а о настоящем голоде знали разве что по рассказам своих родителей.
Неужели люди передают по наследству также и реакцию своего организма на неблагоприятные условия жизни? Можно ли допустить, что следующим поколениям передается не только базовая последовательность ДНК, но и части второго, эпигенетического кода? Разве могли миниатюрные матери передать память своих клеток о дефиците питания эпигеномам собственных детей? «Абсурд!» — решительно отвергли такое представление большинство биологов. Это противоречит всем прежним знаниям в области эволюционной биологии. Ибо одна из главных ее догм утверждает, что мы наследуем исключительно геном.
Действительно, наблюдение Люмэ можно было бы объяснить и без механизма эпигенетического наследования. Например, предположить, что дети голодной зимы попали в порочный круг, аналогичный тому, который приводит к росту ожирения в современном обществе, ведь женщины с неблагоприятной эпигенетической программой начинают болеть гораздо раньше других. Поэтому условия внутриутробного развития их собственных детей часто далеки от оптимальных. И таким образом возрастает риск, что второй код детей изменится и станет похожим на материнский.
По сей день остается открытым вопрос, какое обоснование описанного Ламбером Люмэ феномена считать верным. Впрочем, в последнее время появляется все больше данных, свидетельствующих о том, что эпигенетическая клеточная память действительно иногда преодолевает границу между поколениями. Появляются все новые результаты опытов на животных, одноклеточных и растениях — равно как и результаты эпидемиологических исследований человека, — которые прекрасно иллюстрируют этот тезис. Не в последнюю очередь новые убедительные объяснения приносит детальное изучение эпигенетических механизмов как таковых. С ними казавшаяся поначалу столь абсурдной идея наследования механизмов приспособления к окружающей среде, в том числе и у млекопитающих, представляется весьма вероятной.
Своим образом жизни, выбранным большей частью сознательно, люди влияют не только на состояние собственного здоровья. Это утверждение кажется сегодня вполне справедливым. Через метилирование ДНК, гистоновый код и микро-РНК в яйцеклетках или сперматозоидах они в некоторой степени предрешают благополучие или страдания своих детей и внуков.
Однако я хочу вернуться к началу этой истории, к простой на первый взгляд форме жизни — растениям. «Растения — мастера эпигенетического регулирования», — утверждает генетик Марджори Мацке из Института молекулярной биологии растений имени Грегора Менделя (Вена). У представителей флоры мы находим не только все основные системы переключателей эпигенетического механизма — метилирование ДНК, модификацию гистонов и интерференцию РНК. По словам Мацке, часто они обнаруживают даже «удивительно высокий уровень развития». Благодаря очень большому числу специализированных ферментов и вспомогательных молекул цветы и деревья могут приспосабливать свой второй код к меняющимся условиям среды с совершенством, не свойственным никакой другой форме жизни.
Нам, людям, не стоит обижаться. Поскольку для растений обмен информацией между наследственным материалом и окружающей средой, естественно, намного важнее, чем для нас. «Растения не могут убежать, когда условия их жизни ухудшаются», — говорит пионер эпигенетики Гюнтер Ройтер из Университета Галле. Поэтому система регуляции их генов должна уметь реагировать очень быстро и гибко. Так что в процессе эволюции у растений сформировались сложные эпигеномы.
В зависимости от того, насколько серьезно внешнее воздействие, растения включают один или несколько рычагов своего эпигенетического механизма. При вирусной инфекции, продолжительной засухе, участившихся морозах или наводнениях они могут, например, внезапно изменить модель активации целых групп генов, а могут запустить точно настроенный процесс адаптации отдельных частей генома.
Второй код важен для растений еще и по другой причине: они способны совершенствоваться на протяжении всей жизни. В отличие от животных представители флоры не проходят фазу эмбрионального развития, в конце которой все органы уже сформированы. Они и в преклонном возрасте должны формировать новые корни, ростки, цветы или листья.
Поэтому в специальных зонах роста, называемых меристемами или образовательными тканями, содержится большое количество эмбриональных стволовых клеток. Так же как у человека, который в процессе развития, к сожалению, быстро теряет клетки этого типа, они эпигенетически не дифференцированы по типу ткани, поэтому посредством целенаправленного перепрограммирования потенциально могут превратиться в любую часть растения.
В последнее время эпигенетика привлекает также сельское хозяйство. Подобно тому как современная медицина хочет использовать эпигенетические открытия для создания нового поколения лекарственных препаратов, селекционеры и создатели средств защиты растений пытаются целенаправленно влиять на второй код зерновых, риса или других культур. Например, через РНК-интерференцию они стремятся отключить определенные гены, чтобы ускорить рост, повысить урожайность или стойкость растений. С той же целью они пытаются отключать или активировать отдельные гены путем прикрепления метильных групп и манипуляций гистонами.
Если попытки окажутся удачными, селекционеры могут рассчитывать даже на то, что эти изменения будут наследоваться, поскольку эпигенетики смогли убедительно доказать: растения, так же как одноклеточные, по меньшей мере частично передают клеточную память потомству. По отношению к человеку это пока еще спорно, но в способностях представителей флоры никто из ученых уже давно не сомневается.
Так, Пилар Кубас и ее коллеги из Центра Джона Иннеса (Норвич, Великобритания) уже в 1999 году доказали, что льнянка обыкновенная эпигенетически контролирует форму своих цветков и передает эту информацию по наследству. Великий систематик Карл Линней еще в XVIII веке обратил внимание на то, что это растение встречается в двух формах с совершенно разными цветками. Пилар Кубас и ее коллегам удалось наконец доказать, что за этим стоит эпимутация: у одной из форм льнянки несколько метильных групп блокируют один конкретный ген, у другой формы этот ген активирован.
В большинстве случаев представители разновидности с подавленной информацией передают следующему поколению соответствующее метилирование ДНК. И уже в процессе формирования пыльцы и пестика метильные группы прикрепляются на том же самом участке ДНК, что и в клетках родительского поколения. Ген не активируется, и цветки формируются характерной формы, которая была свойственна предкам. Однако иногда в процессе размножения метилирование исчезает. В этом случае у льнянки с эпимутацией неожиданно появляются потомки с обычной для этого вида формой цветка.