Книга История математики - Ричард Манкевич
Шрифт:
Интервал:
Закладка:
Вряд ли мне известно что-либо, способное столь сильно поразить воображение, как удивительная форма космического порядка, выраженная «Законом частоты появления ошибок». Если бы греки знали его, они наверняка связали бы его с каким-нибудь божеством. Этот закон действует в полнейшем хаосе, сохраняя абсолютное спокойствие и до поры оставаясь в тени. Чем буйнее толпа, чем очевиднее проявляется анархия, тем более заметно его влияние. Это — высший закон безумия. Всякий раз, когда большая выборка хаотически разбросанных элементов выстроена в порядке их величины, оказывается, что в них скрыта самая прекрасная форма регулярности, о которой никто и подозревать не мог.
Фрэнсис Гальтон (1822–1911), кузен Чарльза Дарвина, разработал биометрические принципы. Он использовал статистические методы для анализа социальных данных и наследственных свойств. Главной целью так называемого движения евгеники было улучшить человеческий вид при помощи селективного размножения, а статистика использовалась для обеспечения количественного представления пути развития человечества и способа определения направления его усовершенствования. Гальтон применил нормальное распределение не как «кривую ошибок», но как меру изменения, поняв на основании теории эволюции Дарвина с помощью естественного отбора, что биологическая изменчивость нуждалась в анализе сама по себе, а не как эволюционная ошибка относительно некоторой идеализированной «нормы».
Именно Гальтон ввел понятия регресса и корреляции. Статистическое понятие регресса возникло из исследования душистого горошка. Гальтон разделил партию семян на семь групп согласно размеру семени. Семена получающегося потомства показали ту же самую изменчивость, или разницу в размере, соответственно группам. Средний размер семени всей партии оставался постоянным, но значения размера отдельных групп далеко ушли от своей родительской группы в сторону этого среднего значения — математического ожидания группы. Таким образом, значения «регрессировали» в направлении среднего значения по совокупности. В 1885 году Гальтон обнаружил явление регресса и разобрался в нем, а в 1889 году он ввел связанную с этим понятием идею корреляции. Измеряя две взаимосвязанные переменные и отображая эти значения в виде графика, Гальтон обнаружил единую безразмерную величину, которая служила коэффициентом взаимосвязанности между этими двумя переменными. Этот коэффициент корреляции варьировался между +1 — идеальная положительная корреляция — до -1 — идеальная отрицательная корреляция. Когда этот коэффициент приближался к нулю, это означало, что между переменными нет никакой корреляции. Сам по себе коэффициент корреляции не мог доказать никакой причинной связи между переменными, но мог оправдать дальнейшие эксперименты, которые позволили бы обнаружить эту связь.
Гальтон занимался изучением наследования непрерывного изменения, в то время как Мендель изучал дискретное изменение, хотя ни один из них не знал ничего о работе другого. Грегор Мендель обучался математике и физике. В статье 1865 года он написал о возможном существовании генов, и в 1900 году на эту статью обратили внимание сторонники биометрии. Она привела к серьезной полемике, верные дарвинисты и сторонники биометрического движения по большей части отвергали понятие генетического материала. Пирсон считал эту идею излишне метафизической и не мог понять, как дискретный объект может демонстрировать непрерывные свойства. Вопрос не был решен до тех пор, пока в 1918 году Фишер не показал, что при достаточно большом числе генов в модели Менделя возникнут корреляции, изученные сторонниками биометрии. Это было похоже на дискретное биномиальное распределение, стремящееся к нормальному распределению при увеличивающемся числе испытаний.
Философские аргументы находятся за пределами наших возможностей, но важно подчеркнуть, что статистика развивалась не как независимая ветвь математики. Развитие статистики и инструментов аналитики было поставлено на службу социальным проблемам. В конце жизни Гальтон финансировал профессуру по евгенике (теперь «Генетика человека») в Лондонском университете. Первым профессором был Карл Пирсон (1857–1936), за которым следовал Роналд Эйлмер Фишер (1890–1962).
В 1901 году Пирсон и Гальтон основали журнал «Биометрика», который стал ведущим изданием в области статистики. На его страницах мы находим не только теорию регресса и корреляции Гальтона, но и критерий хи-квадрат Пирсона, разработанный им в 1900 году. Этот критерий позволил правильно оценить, насколько точно подходит теоретическое распределение к данным, к которым оно должно быть применено. В 1908 году B. C. Госсет, ученый-биолог, работавший на пивоваренных заводах Гиннесса в Дублине, ввел t-распределение для маленьких выборок. Он написал статью под псевдонимом «Студент», и t-тест иногда упоминается как «студенческий тест». Большая часть работ Пирсона потерялась в тени более поздних трудов Фишера, который разработал дисперсионный анализ — технику, первоначальным предназначением которой было проверять значение данных экспериментов. Поначалу он применялся для обработки данных случайных групп экспериментов, вроде тех, которые используются в сельском хозяйстве для проверки удобрений. Этот метод математически отделяет любой реальный «эффект» от любой случайной «ошибки». Если какой-то эксперимент показывает реальный эффект, то математический метод выявит интенсивность этого эффекта относительно ошибки.
В 1920-х годах статистика стала считаться математиками вполне законным предметом исследования, поскольку она приводила к большей точности и позволяла уточнять применяемые методы. Фишер изложил идеи относительно плана экспериментов и дисперсионного анализа в своей книге «Проект экспериментов» (1936). Она оказала большое влияние на ученых Англии и США. Они радикально изменили практику проведения экспериментов в тех науках, где приходится иметь дело с изменчивым материалом, который невозможно абсолютно точно повторить в лабораторных условиях.
Люди всегда любили играть в игры, и в каждую эпоху существовало свое повальное увлечение. Большинство игр — сочетание умения и удачи, и лишь после многократных розыгрышей, нивелирующих влияние случая, выяснялось, кто на самом деле самый хороший игрок. Однако существуют некоторые игры, которые практически ничего не оставляют на откуп судьбе — никакого бросания игральных костей, никакой опоры на удачу. Это стратегические игры, и их исследование — предмет теории игр. Есть также игры, выигрыш в которых в буквальном смысле становится вопросом жизни или смерти. Поскольку грубые тактические ошибки менее дорого обходятся на смоделированном поле битвы, военные стратеги всегда обращались к военным играм, чтобы отточить свои навыки, так что нет ничего удивительного, что шахматы или японская игра го — это идеальные военные игры. Также не стоит удивляться тому, что первым практическим применением теории игр был анализ нового вида войны — скорее всего, последней.
В девятнадцатом веке пруссаки изобрели игру, называвшуюся «Кригшпиль», буквально «военная игра». В нее играли на специальной доске. Это была тактика в чистом виде, и она стала реалистичной, как никогда после, когда в ней появился рефери, выносящий решение по спорным ситуациям при помощи таблиц данных, полученных во время реальных сражений. Военный успех прусской армии в значительной степени приписывался их изощренной тактике, отработанной на этой игре. Эту игру взяли на вооружение такие удаленные от Германии страны, как Америка и Япония. Поражение Германии в Первой мировой войне положило конец мифическому статусу игры. Становилось очевидным, что быстрое развитие нового вооружения и систем поставок означало полный пересмотр военной стратегии. Вооруженные силы нуждались в математиках и ученых не только для того, чтобы развивать вооружение, но также и для разработки новых стратегий, что до этого времени было прерогативой генералов, погруженных в изучение военной истории. Особенно заметно это стало после Второй мировой войны, и понимание, что две супердержавы обладают оружием массового поражения, полностью изменило правила. Настольные игры с конницей и пушками казались почти доисторическими.