Книга Великая теорема Ферма - Саймон Сингх
Шрифт:
Интервал:
Закладка:
В 1931 году Гёдель опубликовал свою работу «Über formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme» 5, в которой содержались его так называемые теоремы о неразрешимости. Когда весть о теореме Гёделя достигла Америки, великий математик Джон фон Нейман тотчас же заменил часть своего курса о программе Гильберта обсуждением революционной работы Гёделя.
Гёдель доказал, что попытка создания полной и непротиворечивой математической системы — задача заведомо невыполнимая. Идеи Гёделя можно кратко сформулировать в двух утверждениях. [14]
Первая теорема о неполноте
Если аксиоматическая теория непротиворечива, то существуют теоремы, которые не могут быть ни доказаны, ни опровергнуты.
Вторая теорема о неполноте
Непротиворечивость теории не может быть доказана теми методами, которые в ней формализуются.
По существу, первая теорема Гёделя утверждает, что какая бы система аксиом ни использовалась, всегда найдутся вопросы, на которые математика не сможет найти ответ, — полнота недостижима. Что еще хуже, вторая теорема Гёделя утверждает, что математики никогда не смогут быть уверены в том, что их выбор аксиом не приведет к противоречию, — непротиворечивость никогда не может быть доказана. Гёдель показал, что программа Гильберта неосуществима.
Через несколько десятилетий в своей книге «Портреты по памяти» Бертран Рассел описывал свое впечатление от открытия Гёделя так: «Я жаждал определенности так же, как другие жаждут обрести религиозную веру. Мне казалось, что найти определенность в математике можно с большей вероятностью, чем где-нибудь еще. Но я обнаружил, что многие математические доказательства, которые, в соответствии с ожиданиями моих учителей, мне надлежало принять за истинные, обременены ошибками и что, если определенность действительно может быть обнаружена в математике, то произойдет это в новой области математики с более надежными основаниями, чем те, которые считались надежными прежде. По мере того, как работа продвигалась, мне постоянно приходила на ум басня о слоне и черепахе. Построив слона, на котором мог покоиться математический мир, я обнаружил, что слон нетвердо стоит на ногах, и приступил к построению черепахи, которая удержала слона от падения. Но черепаха оказалась не более надежной, чем слон, и после двадцати с лишним лет напряженнейшего труда я пришел к заключению, что нет ничего, что я бы не сделал, дабы придать математическому знанию непоколебимость».
Вторая теорема Гёделя утверждает, что невозможно доказать непротиворечивость аксиом, но это не обязательно означает, что аксиомы противоречивы. Многие математики все еще верят в глубине сердца, что их математика останется непротиворечивой, но не могут это доказать. Через много лет выдающийся специалист по теории чисел Андре Вейль заметил: «Бог существует потому, что математика непротиворечива, а дьявол существует потому, что мы не можем доказать это».
В действительности, и формулировка и доказательство теорем неполноты Гёделя крайне сложны. Например, строгая формулировка первой теоремы неполноты имеет следующий вид:
Каждому ω-непротиворечивому рекурсивному классу κ формул соответствует такой рекурсивный класс ζ знаков r, что ни ν Gen r, ни Nеg(Gеn r) не принадлежит Flg(k) (где ν — свободная переменная класса r).
К счастью, подобно тому, как история с библиотекарем помогает понять парадокс Рассела, первую теорему о неполноте Гёделя можно проиллюстрировать на другой логической аналогии, которая принадлежит Эпимениду и известна под названием парадокса критянина, или парадокса лжеца. Эпименид был критянином, который воскликнул:
Я лжец!
Парадокс возникает, когда мы попытаемся определить, истинно или ложно утверждение Эпименида. Посмотрим, что произойдет, если предположить, что это утверждение истинно. Из истинного утверждения следует, что Эпименид лжец. Но мы приняли предположение о том, что он высказал истинное утверждение, и, следовательно, Эпименид не лжец. Мы приходим к противоречию.
Теперь предположим, что утверждение Эпименида ложно. Из ложности утверждения следует, что Эпименид не лжец. Но мы приняли предположение, что он высказал ложное утверждение. Следовательно, Эпименид лжец, и мы снова приходим к противоречию. Таким образом, что бы мы не предположили об истинности утверждения Эпименида, мы неизменно приходим к противоречию. Следовательно, утверждение Эпименида не истинно и не ложно.
Гёдель нашел новую интерпретацию парадокса лжеца и ввел понятие доказательства. Результатом его новаций стало следующее утверждение:
Это утверждение не имеет никакого доказательства.
Если бы это утверждение было ложным, то оно было бы доказуемым, но это противоречило бы самому утверждению. Следовательно, во избежание противоречия, утверждение должно быть истинным. Но это утверждение не может быть истинным в силу самого утверждения (о котором мы теперь знаем, что оно должно быть истинным).
Поскольку Гёделю удалось записать это утверждение в математических обозначениях, он смог доказать, что в математике существуют утверждения, которые истинны, но истинность их не может быть доказана, — так называемые неразрешимые утверждения. Для программы Гильберта это было смертельным ударом.
Открытия в области квантовой физики во многом оказались схожи с этой работой Гёделя. За четыре года до того, как Гёдель опубликовал свою работу о неразрешимости, немецкий физик Вернер Гейзенберг открыл принцип неопределенности. Подобно тому, как Гёдель открыл предел, до которого математики могут доказывать свои теоремы, Гейзенберг обнаружил, что существует предел, до которого физики в принципе могут производить измерения свойств. Например, если они хотят измерить точное положение объекта, то скорость того же объекта им удастся измерить лишь со сравнительно большой погрешностью. Связано это с тем, что для измерения положения объекта последний необходимо «обстрелять» фотонами света, но для того, чтобы точно определить положение объекта, фотоны света должны обладать огромной энергией. Но если объект бомбардировать фотонами высокой энергии, то собственная скорость объекта будет испытывать сильнейшие возмущения и станет неопределенной. Следовательно, пытаясь точно определить положение объекта, физики вынуждены поступиться точным знанием его скорости.
Принцип неопределенности Гейзенберга проявляется только на атомных масштабах, когда измерения с высокой точностью приобретают решающее значение. Следовательно, значительная часть физики может продолжать развиваться по-прежнему, в то время как квантовые физики занимаются изучением глубоких вопросов относительно пределов знания. То же самое происходит и в мире математики. В то время как логики ведут доступные пониманию лишь посвященных дискуссии о неразрешимости, остальная часть математического сообщества продолжает свои исследования, не обращая внимание на то, что происходит у логиков. Хотя Гёдель доказал, что существуют некоторые недоказуемые утверждения, в математике существует предостаточно доказуемых утверждений, и его открытие не обесценило доказанных в прошлом теорем. Кроме того, многие математики были убеждены в том, что неразрешимые утверждения Гёделя существуют только в самых «темных» областях математики, находящихся где-то на ее периферии, и что такие неразрешимые утверждения, возможно, никогда не встретятся ни одному математику. Ведь Гёдель утверждал лишь, что такие утверждения существуют, но не привел ни одного из них в качестве примера. Но в 1963 году предсказанный Гёделем теоретический кошмар стал реальностью.