Книга Компьютерные сети. 6-е изд. - Эндрю Таненбаум
Шрифт:
Интервал:
Закладка:
Илл. 2.8. Спектр электромагнитных волн и их применение для электросвязи
Из теоретических основ электросвязи (изложенных далее в этой главе) известно, что количество информации, переносимой сигналом (например, электромагнитной волной), зависит от принимаемой мощности и пропорционально ширине полосы пропускания. Из илл. 2.8 становится ясно, почему разработчики сетей так любят оптоволокно. В микроволновом диапазоне для передачи данных доступна полоса пропускания на много гигагерц, но оптоволокно находится правее на логарифмической шкале, поэтому его показатели еще лучше. В качестве примера рассмотрим 1,30-микрометровый диапазон на илл. 2.5; ширина диапазона составляет 0,17 мкм. Воспользуемся уравнением (2.1) и вычислим начальную и конечную частоты на основе соответствующих длин волн. Диапазон составляет около 30 000 ГГц. При допустимом соотношении «сигнал/шум» в 10 дБ скорость будет равна 300 Тбит/с.
Большая часть данных передается в относительно узком диапазоне частот, другими словами, ∆ f / f << 1. Сигналы сосредоточиваются в узком диапазоне для более эффективного использования спектра и достижения хороших скоростей передачи за счет достаточной мощности. Далее мы опишем три типа передачи, при которых используются более широкие диапазоны частот.
2.2.2. Псевдослучайная перестройка рабочей частоты
При расширении спектра сигнала с псевдослучайной перестройкой рабочей частоты (frequency hopping spread spectrum) передатчик меняет частоту сотни раз в секунду. Этот метод широко используется в военной связи: такую передачу труднее засечь и практически невозможно заглушить. Помимо этого он снижает замирание сигналов, поскольку они движутся от источника к приемнику различными путями. Также он устойчив к узкополосным помехам, поскольку приемник не задерживается долго на проблемной частоте и связь не разрывается. Благодаря такой ошибкоустойчивости данный метод хорошо подходит для перегруженных частей спектра, таких как диапазоны ISM (мы расскажем о них чуть позднее). Псевдослучайная перестройка рабочей частоты также применяется в коммерческих системах, например в Bluetooth и в старых версиях стандарта 802.11.
Любопытно, что одним из изобретателей этой технологии стала австрийская и американская киноактриса Хеди Ламарр (Hedy Lamarr), снискавшая славу ролями в европейских фильмах в 1930-х годах под своим настоящим именем Хедвиг (Хеди) Кислер (Hedwig (Hedy) Kiesler). Ее первый супруг — богатый владелец оружейной фабрики — однажды рассказал ей, насколько легко блокировать радиосигналы управления торпедами. Обнаружив, что он продает вооружение Гитлеру, Хеди пришла в ужас. Переодевшись горничной, она сбежала в Голливуд, где продолжила карьеру актрисы. А в перерыве между съемками Хеди создала технологию перестройки рабочей частоты, чтобы помочь антигитлеровской коалиции.
В ее схеме использовалось 88 частот — по числу клавиш (и частот) фортепиано. Хеди Ламарр и ее друг, композитор Джордж Антейл (George Antheil), запатентовали изобретение (патент U.S. 2292387). Впрочем, им не удалось убедить ВМС США в практической ценности этой технологии, так что никаких выплат они так никогда и не получили. Лишь спустя многие годы после того, как патент утратил силу, эта методика была вновь открыта. Теперь она используется в мобильных электронных устройствах (вместо того, чтобы блокировать сигналы для торпед).
2.2.3. Метод прямой последовательности для расширения спектра
При расширении спектра методом прямой последовательности (direct sequence spread spectrum) информационный сигнал распределяется по более широкому диапазону частот с помощью кодовой последовательности. Данный метод обеспечивает эффективное совместное использование одной полосы частот несколькими сигналами, а потому широко применяется в промышленности. Сигналам присваиваются разные коды методом множественного доступа с кодовым разделением каналов (code division multiple access, CDMA); его мы обсудим позже. На илл. 2.9 приводится сравнение двух методов расширения спектра сигнала (прямой последовательности и псевдослучайной перестройки рабочей частоты). На методе прямой последовательности основываются мобильные телефонные сети 3G. Кроме того, он применяется в GPS. Даже без различных кодов метод прямой последовательности не боится помех и замирания, поскольку теряется лишь небольшая доля полезного сигнала. В таком виде он применяется в старых версиях протокола беспроводных LAN 802.11b. Захватывающая история связи на основе расширения спектра подробно описана в работе Уолтерса (Walters, 2013).
Илл. 2.9. Расширение спектра и сверхширокополосная связь (UWB)
2.2.4. Сверхширокополосная связь
При использовании сверхширокополосной связи (ultra-wideband, UWB) происходит отправка ряда быстрых сигналов низкой мощности, а передача данных происходит за счет варьирования несущих частот. В результате быстрых переходов сигнал распределяется по очень широкой частотной полосе. К UWB относятся сигналы с полосой частот не менее 500 МГц либо занимающие как минимум 20 % от средней частоты их частотного диапазона. UWB-связь также показана на илл. 2.9. При такой ширине полосы частот скорость UWB-связи потенциально может достигать нескольких сотен мегабит в секунду. А поскольку сигнал распределен по широкому диапазону, ему не страшны довольно сильные помехи со стороны других сигналов с узкой полосой частот. Важный нюанс: поскольку при передаче данных на короткие расстояния мощность UWB-сигналов очень невелика, они не генерируют помех для вышеупомянутых узкополосных сигналов. В отличие от передачи данных при расширенном спектре, UWB-сигналы не мешают несущим сигналам в той же полосе частот. Их можно также использовать для просвечивания твердых объектов (земли, стен и тел) или в качестве составной части систем точного позиционирования. Эта технология нередко применяется для связи на коротких расстояниях в помещениях, а также для получения точных координат и отслеживания местоположения.
2.3. Применение спектра электромагнитных волн для передачи данных
В этом разделе мы поговорим об использовании различных частей спектра электромагнитных волн, представленных на илл. 2.8, и начнем с радиоволн. Будем считать, что все передаваемые сигналы — узкополосные (если не указано иное).
2.3.1. Радиосвязь
Радиоволны легко генерировать, они способны преодолевать большие расстояния и с легкостью проходить сквозь стены. Поэтому их повсеместно используют для связи как в помещениях, так и на открытом пространстве. Радиоволны являются всенаправленными, то есть расходятся во все стороны от источника, а значит, нет необходимости тщательно нацеливать передатчик на приемник.
Иногда всенаправленность радиоволн полезна, но порой она может сыграть злую шутку. В 1970-х компания General Motors решила оборудовать все свои новые кадиллаки электронной антиблокировочной системой. При нажатии на педаль тормоза устройство подавало сигналы включения/выключения тормозов вместо их блокировки. Однажды дорожный патрульный