Книга Виролюция. Важнейшая книга об эволюции после "Эгоистичного гена" Ричарда Докинза - Фрэнк Райан
Шрифт:
Интервал:
Закладка:
Нам хорошо известно, когда именно это произошло — причем произошло фактически внезапно, с зарождением позвоночных. У нынешних костных рыб такая же иммунная система, как и у нас. Но ничто не возникает из ничего. Поэтому настоящий вопрос таков: когда же именно среди морских беспозвоночных — а возможно, и в более раннюю эпоху, когда существовали только одноклеточные, — возникло хотя бы отдаленное подобие иммунной системы и как из этой первой искры развилась сложнейшая и быстро реагирующая иммунная система человека?
В 2009 году Луис Вильярреал опубликовал большую обзорную статью об истоках адаптивного иммунитета, в которой представил данные изучения взаимодействия между вирусами и носителями, начиная с бактерий и переходя от беспозвоночных с их негибкой, но довольно эффективной иммунной системой к зарождению адаптивной иммунной системы у позвоночных и далее к иммунной системе млекопитающих, а затем приматов, включая человека. Называлась статья так: «Источник „самости“: генетические паразиты и происхождение адаптивного иммунитета». В ней Вильярреал убедительно доказывает, что первичные формы иммунной системы — а значит, первое утверждение биологической «самости» — произошли от сложного эволюционного взаимодействия между вирусами-фагами и их бактериями-носителями[70].
Ученым давно известно, что вирусы-фаги временами вступают в симбиотическое партнерство с бактерией-носителем, когда вирус присутствует в бактерии, но не размножается нормальным образом — ведь это привело бы к разрушению бактерии и выходу большого числа вирусов-потомков. Вирусологи теперь понимают: такое сосуществование вируса с бактерией — жестокая и коварная, вполне в духе Макиавелли сделка, осуществляемая при помощи механизма, известного как «модуль аддикции». Стоит посвятить несколько минут описанию работы этого механизма.
Если вкратце, то вирус помещает полную копию своего генома в бактерию, но геном остается изолированным от бактерии, обернутым в оболочку и представляет собой плазмид. Геном остается полностью дееспособным, способным производить агрессивные экзогенные вирусы, и потому назван «профаг». Профаг кодирует особые метаболические продукты. Первый — с долговременным эффектом, и, если нет противоядия, он является летальным для носителя токсином. Второй же как раз и есть это противоядие, и он — короткоживущий. Для бактерии, конечно же, лучше избавиться от потенциально смертельного вируса, и бактерии вполне способны избавляться от плазмид через процесс полового размножения, открытый Джошуа Ледербергом и Эдвардом Татумом. Но если бактерия выбросит плазмид, действие противоядия быстро кончится, и долгоживущий токсин убьет бактерию. Но смертью лишь этой бактерии дело не ограничится: этот же свирепый вирус распространится и убьет все бактерии, не обладающие «модулем аддикции», то есть плазмидом. Другими словами, вирус убивает все бактерии, не являющиеся носителями ему подобных вирусов.
Здесь мы видим яркий пример агрессивного симбиоза. Некоторые читатели, возможно, возразят: мол, здесь всего лишь пример «эгоистического» поведения вируса. Но если поразмыслить, прикинуть долговременные эволюционные последствия, то ясно: «модуль аддикции» делит вид бактерий надвое — на тех, у кого есть опасный, но и способный защитить модуль, и на тех, у кого нет. С иммунологической точки зрения «модуль аддикции» создал первичную биологическую «самость».
Это пример того, как сложное взаимодействие между вирусом и бактерией развилось от «эгоизма» до мутуализма. А это, в свою очередь, подразумевает, что естественный отбор уже работает на уровне партнерства. Потому неудивительно обнаружить, что со временем вирусы-фаги становятся «дефективными», теряют заразность и становятся частью целого, бактериально-вирусного голобионта, развивающегося симбиотически. Здесь картина аналогична наблюдаемой при симбиотической эволюции митохондрий либо эндогенизации ретровирусов, превращающихся в HERV либо родственные им структуры. Содержащая «защитный» вирус бактерия защищена от инфицирования сходными вирусами, как это происходит временами с эндогенными вирусами. Начиная с этого первичного «иммунитета», подробно объясняя и анализируя каждый последующий шаг, Вильярреал описывает, как принцип «модуля аддикции» работает на каждой стадии эволюции иммунной системы, от простых и неадаптивных начальных версий ее до сложной высокоадаптивной системы, какая защищает сегодня людей. Процитирую Вильярреала: «Вся адаптивная иммунная система, которая на ранних стадиях развития должна „самообучиться“ различению своего и чужого, установить биологическую самоидентичность и не допускать саморазрушения (аутоиммунности), ведет себя как один огромный модуль аддикции».
Чтобы связать этот факт с уже известными данными о генетической подоплеке аутоиммунных заболеваний, нужно обсудить подробнее человеческий главный комплекс гистосовместимости (МНС) — а вернее, его совместно с прилегающими областями. Сейчас этот комплекс генов обозначается как хМНС. Выше уже писалось: он тесно связан и с аутоиммунностью, и с откликом на инфекцию. Приблизительно каждый пятый из четырехсот двадцати одного гена хМНС играет важную роль в работе нашей иммунной системы. В 1999 году Роджер Докинз с коллегами из Университета Западной Австралии провели глубокое и детальное изучение областей генома, соседствующих с МНС и включающих его, и установили: эти области произошли посредством дублирования простых древних генных структур, развившихся впоследствии в пять различаемых теперь классов МНС[71]. При дальнейших исследованиях австралийские ученые выяснили, что, например, блок генома, содержащий ген HLA-A — тот самый, который участвует в коэволюциии с ВИЧ-1, — содержит десять идентичных генных блоков и в каждом есть последовательности МНС первого класса, тесно ассоциированные с HERV-16.
Австралийские ученые предложили модель эволюции МНС, в которой важнейшую роль играют ретровирусы, — и это вполне согласуется с гипотезой Вильярреала о роли вирусов в эволюции биологической самости. Они также упомянули возможность полезной и даже защитной роли HERV для нашей иммунной системы и сделали вывод: если последовательности HERV в самом деле могут защищать организм, то открываются богатые возможности для терапии с их использованием.
Коль скоро человеческая хМНС содержит множество существенных для нашей иммунной системы генов, то неудивительна ее связь с десятками и сотнями разнообразных заболеваний. Но лишь малое их число связано с определенными генами. Например, анкилозирующий спондилоартрит связан с геном HLA В27, диабет первого типа — с генами DRB1, DQA1 и DQB1, а целиакия, или глютеновая болезнь, — с генами HLA-DQ2 и HLA-DQ8. Генетическая подоплека многих других заболеваний — таких, например, как волчанка, — более сложна. Вероятно, многие аутоиммунные заболевания — например, диабет первого типа, аутоиммунная тиреоидная болезнь, болезнь Аддисона, волчанка и миастения тяжелая псевдопаралитическая — связаны не с определенным геном (или генами), но с определенными комбинациями генов в областях, окружающих МНС.