Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Книги » Современная проза » Дом в Мещере - Александр Иличевский 📕 - Книга онлайн бесплатно

Книга Дом в Мещере - Александр Иличевский

159
0
Читать книгу Дом в Мещере - Александр Иличевский полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 36 37 38 ... 63
Перейти на страницу:

Стефанов поправил подушку.

Я почувствовал, что что-то здесь все-таки не так, и сбавил обороты.

Но это только на первый взгляд может показаться поверхностным выводом, – поспешил я оправдаться. Вы скажете (и ты, вероятно, скажешь): подумаешь, какая простецкая мыслишка – перечисление всего сущего. Что тут особенного, что все, абсолютно все события и вещи можно пронумеровать, – а что с ними после делать-то? И по какому признаку их нумеровать? Как определяется их упорядоченность?

Тут я снова задумался. Твое лицо, развлекая во все стороны мысли, жило у меня перед глазами, оно составлялось из чисел в виде разных звезд, которые, едва застыв, тут же рассыпались и с медленным упорством начинали собираться в облик снова. Еще чуть-чуть, и я бы завис совсем, будучи туго нанизан на непроизносимый ступор рассуждения.

Стефанов с интересом взглянул на меня и спросил:

– Ну что, стоп машина?

– Хорошо, – теперь спокойно вполголоса продолжил я думать, начиная, как тигр в клетке, накручивать «восьмерки» перед камином, – чем же прежде всего отличаются предметы друг от друга? Что сразу можно сказать о предмете на подступе к мысли о нем? Только то, что он сложен или нет, так ведь?

Действительно, сложность – это первое и зачастую последнее качество предмета, которое выуживается при попытке его распознания. Любое нечто имеет свою конкретную сложность. Например, можно сразу сказать, что окно сложнее, чем чайник.

Или подушка. Или то, что в нем – в окне – наблюдается.

Но в то же время ужасно сложно сразу сказать, что сложнее – окно или ты, Катя.

(Думаю все же, что ты. Иначе я бы чаще думал об окне.)

Но именно в этом трудном сравнении сложности предметов и выявляется числовая природа сложности как таковой. Самый естественный способ представления сложности – это представить его числом; за каждой сущностью стоит число, определяющее его сложность.

Теперь вопрос. Существуют ли одинаково сложные сущности? Ответ – нет, не существуют, так как все сущности различны. Отсюда следует, что отождествление сущностей по числам их сложности невозможно. Все кругом различно. Даже один и тот же предмет отличается от самого себя, стоит его только заново помыслить.

Это я так думаю. Возможно, другой думает иначе и вполне допускает существование тождественного отношения в его мире. Я не настаиваю.

Если б я настаивал, я бы противоречил самому себе, так как, настаивая на общезначимости своего суждения, я впустил бы в свой мир тождественность.

Стефанову все это наскучило, он потянулся за книгой и проворчал:

– Глеб, может, хватит, а?

Я набрал воды и врубил чайник. Но решил не сдаваться и сел писать это письмо.

Сейчас уже четверть девятого, и скоро придет медсестра с уколами, – надо закругляться. Так вот, вкратце.

Числа, которые стоят за каждой единицей существования, могут быть страшно велики. Потому что все существования разные, и чисел требуется ужасно много. Обыкновенный чайный стакан может представлять собою число большее, чем расстояние в миллиметрах до созвездия Девы. А что уж там говорить о самом созвездии… Выходит, что качества – варианты наших представлений – всего-навсего «дело десятое», если не «двадцать пятое», по сравнению с числами сложностей.

Теперь очень кратко об изменчивости. О том, почему мне не удается не думать о тебе.

Я не в силах не думать о тебе, потому что мне это интересно. Интерес заключается в неисчерпаемости мысли о тебе. В твоей особенной изменчивости, которая не дает мне скучать, о тебе рассуждая. Это значит, что ты обладаешь ужасной сложностью.

Число твоей сложности огромно. Огромно настолько, что вряд ли представимо какими бы то ни было мысленными механизмами. Представить его тобою самой – тоже затруднительно, но это представление уже ближе к правде, чем какое бы то ни было другое.

Даже гадать всего только о разряде твоего числа бесполезно.

Число его порядка, возможно, превышает число звезд в нашей Вселенной.

Конечно, самой большой сложностью обладает Бог. Тут о представимости числа Его сложности вообще не может быть никакой речи. Единственное, чем можно обмолвиться на этот счет, это то, что Его число, вероятно, сопоставимо с числом сложности нуля. (Нуль, между прочим, очень сложная штука.)

Теперь мы приступаем к приоткрытию тайны изменчивости.

Внимание.

В тьме вышеизложенных соображений естественно было бы задать вопрос: а при чем тут изменчивость, позвольте вас (меня) спросить? А вот при чем. В детстве я читал одну очень занимательную книжку о разных физических явлениях. Как сейчас помню, написал ее человек с коротким французским именем и чуть более длинной, вроде бы английской, фамилией.

Так вот, в частности, среди прочего ужасно интересного повествования там была глава об очень больших числах. Естественно, речь там шла не просто о числах, а о больших числах, играющих главную роль в некоторых физических законах. То есть, попросту, там шла речь о физических константах, величина которых количественно является ужасно выдающейся штукой среди прочих констант. В качестве одного из примеров, на которых строилась эта удивительная гипотеза, был взят пример обратной величины гравитационной постоянной, той, что торчит множителем в законе Великого Тяготения. В ней, насколько я помню, было аж двадцать шесть порядков величины! В том, что рассматривалась обратная величина очень маленькой постоянной, нет ничего удивительного, так как нет никакого существенного различия между очень малым и очень большим, главное в «очень» (см. выше – о божественной сложности нуля).

Суть гипотезы была в том, что если постоянная очень велика, то она вовсе не постоянная, и, следовательно, закон тяготения не есть закон, который неизменен. И выходило так, что там, в этой книжке, утверждалась одна убийственная вещь, которая поразила меня навылет.

А именно: что все очень большие числа есть числа изменчивые.

Другими словами, чем больше число, тем меньше у него шансов оставаться равным самому себе. Отсюда следует, ни больше ни меньше, что закон притяжения тел изменяется во времени (ну не во времени, а в чем-то еще, что очень похоже на время), и значит, сила притяжения тел, она – пульсирует!

Вот почему мне никогда не скучно думать о тебе.

Ты – как очень большое число – изменяешься, и закон твоего изменения непостижим.

Я бы еще добавил сюда что-нибудь о силе притяжения друг к другу очень больших чисел, то есть о том, что вот эта неотвязная моя мысль о тебе и есть следствие непрерывного дребезга чувств нашего влечения друг к другу, который вызывается этим изменением, но уже не могу.

Не могу потому, что только сейчас заметил: катая этот абзац, я уже давно, сколько – не знаю, ору во все горло, а Стефанов мечется вокруг, сжимая двумя подушками голову и уши, и причитает насчет того, когда это все наконец, елки-палки, кончится.

1 ... 36 37 38 ... 63
Перейти на страницу:
Комментарии и отзывы (0) к книге "Дом в Мещере - Александр Иличевский"