Книга Возвращение времени. От античной космогонии к космологии будущего - Ли Смолин
Шрифт:
Интервал:
Закладка:
Приспособленность. В популяционной биологии приспособленность особи, мера ее репродуктивного успеха измеряется числом потомков, которые, в свою очередь, живут достаточно долго, чтобы иметь собственных потомков. Приспособленность Вселенной оценивается тем, сколько в ней “гнездится” черных дыр. Этот показатель зависит от значений параметров. Поскольку породить черную дыру не так-то просто, многие наборы параметров приводят к появлению “бесплодных” Вселенных (вовсе без черных дыр). Другие наборы, напротив, одаривают Вселенные многочисленным потомством. Такие занимают совсем небольшую область в пространстве параметров. Предполагается, что “оазисы” в пространстве параметров окружены гораздо менее “плодородными” областями.
Типичность. Мы предполагаем, что наша Вселенная является типичным представителем семейства Вселенных, аналогично группе потомков после многих поколений. Таким образом, можно предсказать, что наша Вселенная обладает общими для большинства Вселенных свойствами[83].
Мощь естественного отбора такова, что на основе этих предположений можно сделать далеко идущие предположения. Основное следствие таково: много поколений спустя большинство Вселенных приобретет набор параметров в очень плодородных областях. И если мы изменим параметры типичной Вселенной, то результатом, скорее всего, явится Вселенная, в которой образуется заметно меньше черных дыр. Поскольку наша Вселенная типична, это должно быть справедливо и в ее отношении.
Это предсказание можно косвенно проверить. Многие возможности изменения параметров СМ приводят к появлению Вселенных без долгоживущих звезд, необходимых для производства углерода и кислорода. А углерод и кислород необходимы для охлаждения газовых облаков, в которых формируются массивные звезды, в свою очередь приводящие к возникновению черных дыр. В результате других изменений параметров ослабляются сверхновые, которые не только ведут к образованию черных дыр, но и выбрасывают энергию в межзвездное пространство. Эта энергия играет важную роль в коллапсе газовых облаков и, следовательно, в образовании черных дыр. Известно по крайней мере восемь способов изменения параметров СМ, ведущих к образованию Вселенных с меньшим количеством черных дыр[84].
Таким образом, космологический естественный отбор правдоподобно объясняет, почему параметры СМ подстроены под Вселенную, наполненную долгоживущими звездами, которые с течением времени обогатили ее углеродом, кислородом и другими элементами. Параметры, от значений которых в большей или меньшей степени зависит сценарий развития Вселенной, включают массы протона, нейтрона, электрона и электронного нейтрино, а также константы связи четырех фундаментальных взаимодействий. Такое объяснение предполагает максимизацию производства черных дыр, а следствием оказываются пригодные для жизни условия.
Кроме того, гипотеза космологического естественного отбора позволяет сделать несколько прогнозов, которые могут быть подтверждены или опровергнуты с помощью наблюдений, доступных в настоящее время. Так, наиболее массивные нейтронные звезды не могут быть тяжелее определенного предела. Дело в том, что после взрыва сверхновой сохраняется ее ядро, которое коллапсирует либо в нейтронную звезду, либо в черную дыру. Какой из двух сценариев реализуется, всецело зависит от массы ядра. Нейтронные звезды могут существовать, лишь если их масса ниже критического значения. Если гипотеза космологического естественного отбора верна, критическое значение должно быть самым низким из возможных: чем оно ниже, тем больше образуется черных дыр.
Есть несколько возможностей образования нейтронных звезд. Один из вариантов – нейтронная звезда, состоящая просто из нейтронов, и в этом случае значение критической массы будет достаточно высоким (2,5–2,9 массы Солнца). Другая возможность – в ядре нейтронной звезды содержатся экзотические частицы каоны (К-мезоны). Это позволило бы снизить критическую массу по сравнению с чисто нейтронной моделью. Хотя степень этого снижения зависит от деталей теоретического моделирования, различные модели дают критическую массу 1,6–2 массы Солнца.
Если гипотеза космологического естественного отбора верна, мы могли бы ожидать, что природа воспользовалась возможностью поместить каоны в центр нейтронных звезд и так снизить их критическую массу. Оказывается, это могло быть достигнуто в случае, если масса каонов достаточно мала. Это, в свою очередь, достигается снижением массы странного кварка (s-кварка), что не повлияло бы на вероятность образования звезд. Когда был впервые предложен космологический естественный отбор, самая тяжелая из известных нейтронных звезд была тяжелее Солнца менее чем в 1,5 раза. Но недавно обнаружена нейтронная звезда, имеющая массу, равную немногим больше двух солнечных масс. Это могло бы опровергнуть выводы космологического естественного отбора, но теорию удалось спасти. В настоящий момент верхняя теоретическая оценка массы нейтронной звезды в два раза превышает массу Солнца. Однако есть менее точно измеренные нейтронные звезды, масса которых оценивается в 2,5 массы Солнца[85]. Если эти наблюдения подтвердятся, гипотеза космологического естественного отбора будет опровергнута[86].
Еще одно предсказание происходит из рассуждений об удивительной особенности ранней Вселенной, структура которой была крайне равномерна. Распределение материи в ранней Вселенной известно из наблюдений за МФИ. Оно изменялось очень незначительно. Почему Вселенная в самом начале не имела больших флуктуаций плотности? Если бы вариации плотности были достаточно велики, раннюю Вселенную заполнили бы первичные черные дыры, что впоследствии привело бы к наличию во Вселенной гораздо большего числа черных дыр, чем есть сейчас. Это, кажется, опровергает гипотезу космологического естественного отбора, которая заключается в том, что никакие незначительные изменения в параметрах законов физики не приведут к состоянию Вселенной с существенно большим количеством черных дыр, чем в нашем мире.