Книга Жизнь на грани. Ваша первая книга о квантовой биологии - Джонджо МакФадден
Шрифт:
Интервал:
Закладка:
Теперь мы видим, что при каждом включении атомной пушки, которое сопровождается появлением яркой точки на экране, сигнал издает левый или правый датчик, но не оба сразу. Несомненно, теперь мы наконец имеем доказательства, что взаимодействие атомов имеет место при прохождении атомов через одну или другую щель, но не обе одновременно. Однако будем терпеливыми и продолжим наблюдать за экраном. По мере того как отдельные вспышки света объединяются, мы видим, что рисунок, создаваемый ими, уже не похож на интерференционную картину. Вместо нее появляются две яркие полосы, указывающие на скопление множества атомов позади каждой щели, так же как в опыте с пулями. Теперь в ходе эксперимента атомы ведут себя как обычные частицы. Как будто каждый атом ведет себя как волна при встрече со щелями, если за ним не наблюдают, в противном случае он просто остается крошечной частицей.
Возможно, присутствие датчика вызывает проблему, влияя на странное поведение атомов, проходящих через щели. Давайте проверим это, удалив один датчик, скажем, справа. Мы все еще можем получить некоторую информацию из этой схемы, потому что при включении пушки и появлении сигнала и яркого пятна на экране мы будем знать, что атом должен был пройти через левую щель. Когда мы включаем пушку, не слышим сигнала, но видим яркую точку на экране, то мы знаем, что атомы должны были попасть на экран через правую щель. Теперь мы можем знать, прошли атомы через левую или правую щель, но их траектория «нарушается» только с одной стороны. Если датчик сам по себе вызывает проблемы, мы будем ожидать, что атомы, которые вызвали звуковой сигнал, ведут себя как пули, а атомы, которые не вызвали сигнала (и прошли через правую щель), ведут себя как волны. Вероятно, мы увидим смесь пулеобразной картины (от атомов, прошедших через левую щель) и картины интерференции (от атомов, прошедших через правую щель) на экране.
Но это не так. В данной ситуации мы снова не наблюдаем интерференционной картины. На экране позади каждой щели образуется рисунок, выполненный пулеобразными атомами, ведущими себя как частицы. Кажется, что самого присутствия датчика, регистрирующего расположение атома, достаточно для уничтожения его волнового поведения, даже если датчик располагается на некотором расстоянии от траектории атома, проходящего через другую щель!
Возможно, физического присутствия датчика рядом с левой щелью достаточно, чтобы повлиять на прохождение атомов через нее, так же как большой камень изменяет направление воды в стремительном потоке. Мы можем провести эксперимент, выключив левый датчик. Он все еще на своем месте, так что мы можем ожидать, что его влияние будет практически таким же. Но теперь, в присутствии выключенного датчика, на экране опять появляется интерференционная картина! Все атомы, участвующие в опыте, опять стали вести себя как волны. Почему атомы ведут себя как частицы в присутствии включенного датчика около левой щели, но как только датчик выключают, они ведут себя как волны? Как частица, проходящая через правую щель, знает о том, включен или выключен датчик, расположенный слева?
На данном этапе вам придется забыть о логике и здравом смысле. Теперь мы имеем дело с корпускулярно-волновым дуализмом крошечных объектов, таких как атомы, электроны или фотоны, которые ведут себя как волна, если мы не знаем, через какую щель они проходят, и как частица, если мы наблюдаем за ними. Это и есть процесс наблюдения или измерения квантовых объектов, о котором мы говорили в главе 1, рассматривая демонстрацию квантового запутывания отдельных фотонов в эксперименте Алена Аспе. Как вы помните, команда Аспе измеряла фотоны, пропуская их через поляризованную линзу, устранявшую их запутанное состояние — которое является признаком их волновой природы, — заставляя их выбирать одно классическое поляризационное направление. Подобным образом измерение атомов, участвующих в опыте с двумя щелями, заставляет их выбирать между прохождением через правую или левую щель.
Квантовая механика действительно предоставляет нам замечательное логичное обоснование данного феномена; но единственное объяснение увиденного — результата опыта — не о том, что происходит, когда мы не наблюдаем. Однако, поскольку мы можем только видеть и измерять, вероятно, нет смысла требовать от квантовых объектов большего. Как мы можем оценить правомерность или правоту сообщения о феномене, которое мы не сможем никогда, даже в теории, проверить? Как только мы пытаемся это сделать, мы изменяем результат.
Квантовая интерпретация опыта с двумя щелями заключается в том, что в любой данный момент времени каждый атом должен быть описан набором чисел, определяющим его вероятное расположение в пространстве. Это показатель, который мы описывали в главе 2 как волновую функцию. Тогда мы говорили о волновой функции на примере отслеживания волны преступления, распространяющейся по городу путем определения вероятности ограблений в различных районах. Подобным образом волновая функция, описывающая прохождение атома через две щели, прослеживает вероятность обнаружения его в любой точке аппарата в любое заданное время. Но, как мы уточняли ранее, если грабитель должен иметь одно расположение в пространстве и времени и волна «вероятности преступления» описывает только наш недостаток знаний о его действительном расположении, то, наоборот, волновая функция атома в опыте с двумя щелями реальна, то есть она описывает физическое положение атома, который в действительности не имеет конкретного положения, если мы его не измеряем. Атом, таким образом, находится во всех местах одновременно — с переменной вероятностью, конечно, так что мы вряд ли найдем атом в местах, где его волновая функция мала.
Таким образом, вместо отдельных атомов, участвующих в опыте с двумя щелями, мы должны рассматривать волновую функцию, проходящую от источника к заднему экрану. При прохождении через щели волновая функция расщепляется на две и каждая половина проходит через одну из щелей. Отметим: то, что мы описываем здесь, является способом, которым абстрактное математическое число изменяется во времени. Бесполезно спрашивать, что в действительности происходит, так как мы должны посмотреть, чтобы проверить. Но как только мы попытаемся это сделать, мы исказим результат.
Возникает вопрос: когда волновая функция вновь «превращается» в локализованный атом? Ответим: когда мы пытаемся определить его положение. При подобном измерении квантовая волновая функция распадается до единственной вероятности. Опять же это не похоже на ситуацию с грабителем, где неопределенность его местонахождения внезапно сводится к единственной точке, после чего его арестовывает полиция. В этом случае определение повлияло именно на нашу информацию о местонахождении грабителя. Он был всегда только в одном месте в одно время. Но для атома это не так; в отсутствие какого-либо измерения атом действительно находится везде.
Таким образом, квантовая волновая функция рассчитывает вероятность обнаружения атома в конкретном месте, где мы сможем выполнить измерение его положения в данное время. Там, где перед измерением волновая функция велика, полученная вероятность обнаружения атома будет высока. Но там, где она мала, возможно, из-за деструктивной волновой интерференции, соответственно вероятность обнаружения атома, если мы захотим посмотреть, низка.