Книга Максвелловская научная революция - Ринат Нугаев
Шрифт:
Интервал:
Закладка:
Тем самым Максвелл справедливо охарактеризовал весь аппарат молекулярных вихрей как демонстрационную – или «рабочую – модель» (на языке «Трактата об электричестве и электромагнетизме»).
Резюме третьей главы
Проведенных в статье 1856 г. исследований оказалось недостаточно для того, чтобы охватить всю область известных электромагнитных явлений, и в 1861 г. Максвелл начинает публикацию в четырех частях в журнале «Philosophical Magazine» второй статьи, посвященной проблемам электричества и магнетизма – «О физических силовых линиях». Название ее первого раздела говорит само за себя: «Применение теории молекулярных вихрей к явлениям магнетизма». Его цель – переполучить результаты теорий Вебера и Неймана, исходя на этот раз из новой, «вихревой» механической модели несжимаемой жидкости.
Но во второй части статьи 1861 г., которая была озаглавлена «Применение теории магнитных вихрей к электрическим токам», Максвелл подходит к тяжелейшей проблеме своей исследовательской программы – как «физически связаны эти вихри с электрическими токами». В этом пункте он осознает ограниченность чисто механической модели для описания взаимосвязи явлений электричества и магнетизма и вынужден напрямую заимствовать элементы теории действия на расстоянии. Максвелл вынужден приступить к конструированию гибридных теоретических моделей, сконструированных из базисных объектов и сочетающих черты принципиально разных, чужеродных теоретических схем.
Важность введения гибридной модели Максвеллом трудно переоценить. Оно было равносильно признанию в том, что механические объяснения принципиально неполны и должны быть дополнены другими. И электрический заряд, и масса не могут быть полностью объяснены механически.
Но полученные результаты были, конечно, недостаточными для того, чтобы серьезно конкурировать с теорией действия на расстоянии, в частности, не хватало теоретического воспроизведения основного закона электростатики – закона Кулона. Именно это и было сделано в знаменитой третьей части работы 1861 г., которая называлась «Применение теории молекулярных вихрей к статическому электричеству». Оказалось, что если мы, в процессе встречи френелевской оптики и теории электромагнетизма перенесем одни свойства эфира из оптики в теорию электромагнетизма, то мы избавимся по меньшей мере от одного предположения ad hoc. Распространение теории молекулярных вихрей на явления электростатики оказалось возможным именно из-за учета упругости вихрей, которые делают магнито – электрическую субстанцию способной поддерживать волны упругости. В итоге Максвелл не объяснил – откуда берутся, как генерируются электромагнитные волны. Он лишь показал, что его эластичная вихревая среда способна распространять электромагнитные волны со скоростью, которую можно подсчитать из электромагнитных констант и которая весьма близка к скорости света.
Введение тока смещения было следствием попыток Максвелла связать уравнения, относящиеся к электрическому току, с уравнениями электростатики, что потребовало модификации закона Ампера за счет введения нового члена, описывающего упругость вещества, из которого состоят вихри. В итоге импульс, побудивший Максвелла ввести ток смещения, все-таки лежал в попытках объединить все основные эмпирические законы, относящиеся к области явлений электричества и магнетизма, а также оптики, откуда свойство упругости эфира и было перенесено.
Максвелл положил начало не столько объединению электродинамики и теории магнетизма, сколько объединению британской и континентальной традиций – полевой и корпускулярной традиций рассмотрения электромагнитного взаимодействия.
Наиболее важное следствие предложенной Максвеллом системы уравнений состояло в «упрочении возможности того, что электромагнитные волны могут распространяться со скоростью, которая может быть подсчитана при помощи результатов чисто электрических измерений». Ни в одной из своих работ Максвелл ничего не написал ни о возможности генерации света, ни о том, что могут существовать другие, несветовые электромагнитные волны подобные радиоволнам или рентгеновскому излучению.
Ни о каком окончательном объединении электричества, магнетизма и оптики в 1861 г. не приходилось и говорить. Можно было уверенно заявлять лишь о начале согласования – взаимопроникновения – френелевской оптики, фарадеевской концепции поля и ампер-веберовской электродинамики друг в друга, ставшем возможным за счет конструирования системы теоретических объектов из базисных объектов всех трех упомянутых программ.
ЗАВЕРШАЮЩИЕ ЭТАПЫ РЕАЛИЗАЦИИ СИНТЕТИЧЕСКОЙ ПРОГРАММЫ МАКСВЕЛЛА
Годы, последовавшие за публикацией статьи [II], отмечены следующим парадоксом. Многие современники Максвелла (и особенно его друг Уильям Томсон) надеялись на то, что дальнейшие шаги в разработке электродинамики будут связаны с совершенствованием вихревой модели, которую он с такой изобретательностью изложил на страницах «Philosophical Journal» и с тем, что он сконструирует, наконец, «истинный механизм» генерации и распространения электромагнитного излучения. Но их ждало полнейшее разочарование. (Это еще раз подтверждает справедливость больцмановского замечания о том, что большинство физиков-современников Максвелла просто не поняли сути его – кантианской – синтетической программы).
Из многократных заявлений Максвелла следует, что он предполагал, что истинные механизмы действия природных сил находятся далеко за пределами, заданными возможностями нашего понимания. Эти механизмы остаются в секрете, также как устройство колокольни в известном максвелловском примере, когда мы слышим звон и знаем откуда он, но не знаем как он производится, каким образом связаны между собой веревки, идущие от звонарей к колоколам.
В работе 1864 г. «Динамическая теория электромагнитного поля» (III]) Максвелл ставит своей целью вывести уравнения электромагнитного поля не из искусственно сконструированной механической модели, а из принципа наименьшего действия, из лагранжиана, специально сконструированного для электромагнитного поля. Но для этого лагранжиан сначала надо правильно построить, что Максвелл и делает, исходя из определенных «очевидных» умозрительных принципов.
То, насколько обычно сдержанный в оценках, высоко ставил Максвелл эту работу, видно из следующей приписки, сделанной им в письме к одному из своих кузенов: «у меня в полном разгаре работа над статьей с электромагнитной теорией света, которую, до тех пор пока меня не убедят в обратном, я буду считать великим оружием (great guns)» (цит. по: Mahon, 2002, p. 123).
Статья, признанная лучшей из электродинамических работ Максвелла по ясности и компактности изложения, начинается с утверждения о том, что явления света и тепла дают нам основание предполагать, что имеется некая «эфирная среда, заполняющая все пространство и пронизывающая все тела», которая обладает способностью быть приводимой в движение, передавать это движение и сообщать это движение плотной материи. Для этого части этой среды должны быть способны к определенному роду упругого смещения, поскольку передача от одного места к другому требует времени. Поэтому данная среда обладает способностью получать и сохранять два вида энергии – «актуальную» энергию, зависящую от движения ее частей, и «потенциальную» энергию – работу, которую среда выполняет в силу своей упругости. Распространение колебаний, по Максвеллу, состоит в преобразовании одной из этих форм энергии в другую попеременно.