Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Книги » Домашняя » Ноль. Биография опасной идеи - Чарльз Сейфе 📕 - Книга онлайн бесплатно

Книга Ноль. Биография опасной идеи - Чарльз Сейфе

199
0
Читать книгу Ноль. Биография опасной идеи - Чарльз Сейфе полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 28 29 30 ... 51
Перейти на страницу:

Правило Лопиталя нанесло первый удар по тревожащим математиков выражениям 0 / 0, постоянно встречавшимся в математическом анализе. Правило дало способ определять истинную величину математических функций, стремящихся к 0 / 0 в данной точке. Правило Лопиталя гласит, что значение отношения функций равно производной верхнего выражения, деленному на производную нижнего выражения. Например, рассмотрим выражение x / (sin x), когда x = 0. При x = 0 sin x = 0, так что выражение принимает вид 0 / 0. Используя правило Лопиталя, мы увидим, что выражение стремится к 1 / (cos x), поскольку производная x — это 1, а производная sin x — это cos x. При x = 0 cos x равен 1, так что все выражение равно 1 / 1 = 1. Ловкие манипуляции могли также позволить с использованием правила Лопиталя разрешать и другие странные вопросы: / ∞, 0 / 0, 0 / ∞, ∞0.

Все эти выражения, но особенно 0 / 0, могли бы принимать любые значения, какие только пожелаете, в зависимости от того, какие функции вы поставите в числитель и в знаменатель. Поэтому-то 0 / 0 и назвали неопределенностью. Это теперь не было полной тайной, математики могли получить некоторую информацию о 0 / 0, если подходили к делу очень осторожно. Ноль больше не был врагом, которого следовало избегать, это была подлежащая изучению загадка.

Вскоре после смерти Лопиталя в 1704 году Бернулли начал утверждать, что тот украл его работу. В то время математическое сообщество отвергло претензии Бернулли: не только Лопиталь проявил себя как умелый математик; Иоганн Бернулли имел запятнанную репутацию. Он уже раньше пытался приписать себе заслугу другого математического доказательства (другим математиком был его брат, Якоб Бернулли). В данном случае, однако, претензии Иоган на Бернулли были обоснованны: это подтверждалось его перепиской с Лопиталем. К огорчению Бернулли, название «правило Лопиталя» прижилось.

Это правило было чрезвычайно важным для разрешения трудностей с 0 / 0, однако лежащая в их основе проблема оставалась. Новая математика Ньютона и Лейбница зависит от деления на ноль и от чисел, которые чудесным образом исчезают при возведении в квадрат. С помощью правила Лопиталя 0 / 0 исследуется инструментами, изначально опирающимися на 0 / 0. Эти аргументы — замкнутый круг. Физики и математики по всему миру начали использовать математический анализ для изучения природы, а концепцию абсолютного пространства — для объяснения движения — под крики протеста со стороны Церкви.

В 1734 году, через 7 лет после смерти Ньютона, ирландский епископ Джордж Беркли написал книгу под названием «Аналитик, или рассуждение, адресованное неверующему математику». (Под неверующим математиком, вероятнее всего, подразумевался Эдмунд Галлей, всегда поддерживавший Ньютона.) В «Аналитике» Беркли обрушился на грязные трюки с нолем Ньютона и Лейбница.

Называя бесконечно малые «призраками исчезнувших величин», Беркли показал, что безнаказанное исчезновение этих бесконечно малых ведет к противоречию. Он заключал: «Разве математики, столь чувствительные в вопросах религии, строго скрупулезны в своей собственной науке?»

Хотя математики того времени язвили по поводу логики Беркли, славный епископ был совершенно прав. В те дни исчисление было очень отлично от других областей математики. Каждая теорема в геометрии строго доказывалась. Позаимствовав несколько правил у Евклида и тщательно, шаг за шагом продвигаясь вперед, математик мог доказать, что углы треугольника в сумме равны 180 градусам, или любой другой геометрический факт. С другой стороны, анализ основывался на вере.

Никто не мог объяснить, как при возведении в квадрат исчезают бесконечно малые. Этот факт просто принимался потому, что, заставив их исчезнуть в нужный момент, математики получали правильный результат. Никого не беспокоило деление на ноль, раз удобное игнорирование правил математики объясняло все — от падения яблока до орбит планет на небе. Хотя анализ давал правильные результаты, его использование было таким же актом веры, как вера в Бога.

Конец мистицизма

Количество — это что-то или ничто; если это что-то, оно еще не исчезло; если это ничто, оно буквально исчезло. Предположение, что имеется промежуточное состояние между этими двумя, — химера.

Жан Лерон Даламбер

Под сенью Французской революции мистика была изгнала из математического анализа.

Несмотря на шаткие основания, к концу XVIII века математики по всей Европе достигли поразительных успехов, используя новый инструмент. Колин Макларен и Брук Тейлор, возможно, лучшие английские математики эры изоляции от континента, обнаружили, как использовать исчисление для того, чтобы записывать функции в совершенно новом виде. Например, используя некоторые уловки, математики обнаружили, что функция 1 / (1 — x) может быть записана как 1 + x + x2 + x3 + x4 +… Хотя два выражения выглядят совершенно разными, они (с некоторыми пояснениями) — в точности одно и то же.

Эти пояснения, вытекающие из свойств ноля и бесконечности, могут оказаться очень важными. Швейцарский ученый Леонард Эйлер, вдохновленный простыми манипуляциями с нолем и бесконечностью в исчислении, используя те же рассуждения, что и Макларен и Тейлор, «доказал», что сумма… 1 / x3 + 1 / x2 + 1 / x + 1 + x + x2 + x3 + x4 +… равна нолю. (Чтобы убедиться, что тут что-то не то, подставьте в качестве x число 1 и посмотрите, что получится.) Эйлер был прекрасный математик — он был одним из самых плодовитых и влиятельных ученых в истории, но в этом случае небрежное обращение с нолем и бесконечностью заставило его сделать ошибку.

Тем, кто наконец укротил ноли и бесконечность, оказался подкидыш; в 1717 году на ступенях «Круглой церкви Святого Иоанна» (Saint Jean Baptiste le Rond) в Париже был найден младенец. В память об этом ребенка назвали Жан Лерон. Со временем он взял фамилию Д’Аламбер. Хотя ребенок был воспитан в бедной рабочей семье — его приемный отец был стекольщиком, как выяснилось, его отцом являлся генерал, а матерью — аристократка.

Д’Аламбер наиболее знаменит своим двадцатилетним участием совместно с Дени Дидро в создании «Энциклопедии наук, искусств и ремесел». Однако Д’Аламбер был больше, чем энциклопедистом. Именно он осознал, как важно рассмотреть путь, а не только пункт назначения. Именно Д’Аламберу принадлежит идея предела и разрешение существовавшей в исчислении проблемы ноля.

Рассмотрим еще раз историю Ахиллеса и черепахи — сумму шагов, все больше и больше приближающихся к нолю. Манипуляции с суммой бесконечного числа слагаемых — будь это проблема Ахиллеса, нахождение площади, ограниченной кривой, или альтернативное представление математической функции — заставили математиков прийти к противоречивому результату.

Д’Аламбер понял, что проблема Ахиллеса решается, если рассмотреть предел этой гонки. В приведенном выше примере с каждым шагом черепаха и Ахиллес приближаются к отметке в два фута. Ни один шаг не позволяет им продвинуться дальше и даже не позволяет им поравняться. В каждый момент они делаются ближе к указанной отметке. Таким образом, предел гонки — окончательный пункт назначения — и есть отметка в 2 фута. Именно там Ахиллес перегонит черепаху.

1 ... 28 29 30 ... 51
Перейти на страницу:
Комментарии и отзывы (0) к книге "Ноль. Биография опасной идеи - Чарльз Сейфе"