Книга Страх физики. Сферический конь в вакууме - Лоуренс Краусс
Шрифт:
Интервал:
Закладка:
Работа БАК критически зависит от множества сверхпроводящих магнитов, составляющих его «главный двигатель». Без этих магнитов, охлаждаемых до температур, при которых материал их катушек переходит в сверхпроводящее состояние, сооружение подобного ускорителя было бы невозможным или, по крайней мере, немыслимо дорогим. Чтобы понять, насколько глубоко взаимосвязаны БАК и явление сверхпроводимости, нам следует мысленно перенестись на сотню лет назад, в Аенден, в лабораторию голландского физика Хейке Камерлинга-Оннеса. Камерлинг-Оннес изучал свойства металлической ртути при низких температурах, в частности, измерял зависимость от температуры ее электрического сопротивления. При уменьшении температуры электрическое сопротивление металлов тоже уменьшается, поскольку тепловое движение атомов, составляющих кристаллическую решетку, замирает, и электроны проходят через нее более свободно. Камерлинг-Оннес ожидал, что сопротивление будет монотонно падать с уменьшением температуры, но неожиданно обнаружил, что при температуре около -270 °С сопротивление вдруг скачком падает до нуля. Не просто резко уменьшается, а исчезает. Полностью исчезает! Ток, текущий через катушку из такого материала, не прекратится никогда. Камерлинг-Оннес продемонстрировал это явление очень эффектно, привезя сверхпроводящую катушку с циркулирующим в ней током из своего дома в Аендене в Кембридж.
Сверхпроводимость оставалась загадкой почти полвека, пока в 1957 году три физика — Джон Бардин, Аеон Купер и Джон Роберт Шриффер не создали его полное микроскопическое теоретическое объяснение. Бардин к тому времени уже получил одну Нобелевскую премию за участие в изобретении транзистора — ключевого компонента всей современной электроники. Нобелевская премия, которую он разделил в 1972 году с Купером и Шриффером, была уже второй. Помню, я как-то прочитал в одном из писем в физический журнал, что по иронии судьбы, когда Бардин, единственный человек, получивший две Нобелевские премии в одной и той же области, умер в 1992 году, об этом даже не сообщили по телевидению, в то время как было бы очень полезно миллионам телезрителей узнать о человеке, благодаря открытиям которого они имеют возможность смотреть свой телевизор.
Ключевая идея, приведшая к созданию теории сверхпроводимости, была сформулирована в 1930 году Фрицем Лондоном. Он предположил, что подобное странное поведение вещества может быть результатом квантово-механического эффекта, который обычно проявляется только на атомных масштабах, внезапно проявившегося на макроуровне. Согласно его теории, электроны, ответственные за протекание электрического тока в проводнике, которые в обычных условиях ведут себя подобно неорганизованной толпе, под воздействием какого-то квантово-механического механизма вдруг начинают вести себя, как организованная армия, действуя когерентно, как одно целое, а это приводит к тому, что квантово-механические законы проявляются на макроуровне. Когда все электроны представляют собой единую конфигурацию, которая тянется через весь проводник, электрический ток уже нельзя рассматривать как совокупность независимых движений отдельных электронов, которые могут отскакивать от препятствий (что в обычных условиях и приводит к появлению электрического сопротивления). Это будет согласованное движение, охватывающее весь объем вещества и потому не испытывающее сопротивления. В одном состоянии эта конфигурация соответствует ансамблю электронов в состоянии покоя. В другом состоянии, которое является стабильным и не зависящим от времени, весь ансамбль электронов синхронно движется в одном направлении.
Подобное явление может иметь место только благодаря важному квантово-механическому свойству: энергия, которая может быть передана или отобрана у системы конечного размера, квантована, то есть она может передаваться только дискретными порциями. Набор возможных энергетических состояний любой частицы в системе также дискретен. Что происходит, когда у вас есть целая куча частиц в куске вещества? Если внутри этого куска имеется много свободных энергетических состояний, то частицы могут распределяться по этим состояниям весьма произвольным образом. Однако при понижении температуры число возможных состояний уменьшается, и наступает такой момент, когда все находящиеся в куске вещества частицы вынуждены находиться в одном и том же состоянии, потому что других возможных состояний просто не осталось.
Чтобы понять, как это может произойти, рассмотрим следующую житейскую аналогию: вы смотрите кинокомедию в переполненном кинотеатре и находите ее очень смешной. Затем вы покупаете DVD с этим фильмом, чтобы еще раз посмотреть комедию дома, но она уже не кажется вам такой смешной, какой была в кинотеатре. В чем причина? Смех заразителен. Когда кто-то рядом с вами начинает оглушительно хохотать, трудно удержаться и не засмеяться вместе с ним. И чем больше людей смеются вокруг вас, тем труднее сдержать собственный смех.
Физически же в куске вещества происходит примерно следующее: в определенной конфигурации две частицы могут образовать устойчивую пару, так что их суммарная энергия будет меньше, чем сумма энергий двух свободных частиц. Если же энергия ансамбля из трех частиц оказывается меньше, чем сумма энергий уже образовавшейся пары и свободной частицы, то к ним может присоединиться и третья частица и так далее. Подобное объединение становится возможным, только если все частицы находятся в одном и том же, самом низкоэнергетическом из всех возможных состояний. Вы, возможно, уже догадались, что произойдет дальше: довольно скоро все частицы окажутся в одном и том же квантовом состоянии, объединившись в своеобразный когерентный конденсат.
А дальше происходит следующее. Поскольку каждое квантовое состояние системы характеризуется собственным дискретным значением энергии, то после того, как все частицы окажутся в одном и том же квантовом состоянии, энергия этого состояния при определенных обстоятельствах может оказаться гораздо меньшей, чем энергия состояния, в котором все частицы объединены, а одна свободна. Этот энергетический разрыв, или, как его называют, потенциальный барьер между двумя ближайшими состояниями системы, может быть очень большим. Именно в такой ситуации и возникает сверхпроводимость.
Несмотря на то что каждый электрон заряжен отрицательно и между электронами действует сила электростатического отталкивания, внутри кристаллической решетки на электроны действует также и сила притяжения со стороны атомных ядер, которая не дает электронам вылететь из кристалла. При низкой температуре, когда энергия теплового движения электронов очень мала по сравнению с энергией связи кристаллической решетки, электроны начинают объединяться в пары, которые, в свою очередь, образуют единый когерентный электронный конденсат. Если теперь подать на кристалл разность потенциалов, то есть подключить его к электрической батарее, электронный конденсат начнет двигаться как единое целое. Если любой из электронов сталкивается с препятствием, то энергия, необходимая, чтобы остановить этот электрон, то есть выбить его из когерентного ансамбля, оказывается гораздо больше энергии этого электрона. Электрон не в состоянии преодолеть потенциальный барьер и выскочить из ансамбля, поэтому он вынужден продолжать движение вместе со всеми остальными электронами. Таким образом, все электроны синхронно перемещаются в одном направлении, а кристаллическая решетка не оказывает их движению никакого сопротивления.