Книга Царь всех болезней. Биография рака - Сиддхартха Мукерджи
Шрифт:
Интервал:
Закладка:
Раннее взаимодействие между синтетической химией и медициной в общем и целом сводилось к глубокому разочарованию. Гидеон Гарвей, врач, живший в семнадцатом веке, однажды назвал химиков «самыми бесстыжими, невежественными, напыщенными, жирными и тщеславными людьми на свете». Взаимное презрение и вражда между двумя этими дисциплинами сохранялись не одну сотню лет. В 1849 году Август Гофман, учитель Уильяма Перкина в Королевском колледже, мрачно признавал пропасть между медициной и химией: «Ни одно из этих веществ до сих пор так и не нашло какого-либо применения в жизни. Нам не удается использовать их… для исцеления недугов».
Впрочем, Гофман догадывался, что граница между синтетическим и природным рано или поздно исчезнет. В 1828 году берлинский ученый по имени Фридрих Вёлер вызвал целую метафизическую бурю в науке, когда в результате выпаривания цианата аммония, простой неорганической соли, получил мочевину, химическое вещество, вырабатываемое почками. Эксперимент Вёлера — внешне совсем непритязательный — имел огромное значение для науки. Мочевина считалась «природным» веществом — но ее предшественником оказалась простая неорганическая соль. Тот факт, что вырабатываемое живым организмом соединение можно запросто создать в колбе, грозил уничтожить существующие представления о живых организмах: на протяжении многих веков считалось, что химия жизни наделена мистическими свойствами, жизненной силой, которую невозможно воссоздать в лаборатории. Эта теория носила название «витализм», и эксперимент Вёлера ее опроверг, доказав, что органические и неорганические вещества взаимосвязаны. По сути, биология — тоже химия: возможно, даже человеческое тело — не более чем сосуд бурно реагирующих между собой химических веществ, этакая пробирка с ногами, руками, глазами, мозгом и душой.
Со смертью витализма эта логика неминуемо должна была распространиться и на медицину. Если в лаборатории можно синтезировать химические вещества, характерные для живых существ, то будут ли такие вещества работать в живых системах? Если биология и химия тесно сплетены меж собой, то способна ли молекула, полученная из колбы, влиять на внутреннюю работу биологического организма?
Вёлер, врач по образованию, вместе с учениками и соратниками попытался перейти из мира химии в мир медицины. Однако синтезированные ими вещества были слишком примитивными, а для вмешательства в живые клетки требовались куда более сложные молекулы.
И все же такие многофункциональные химические соединения уже существовали: лаборатории красильных фабрик во Франкфурте буквально ломились от них. Чтобы построить желанный мост между биологией и химией, Вёлеру только и надо было, что предпринять однодневную поездку из своей геттингенской лаборатории во Франкфурт. К сожалению, ни сам Вёлер, ни его студенты так и не сделали этот последний необходимый шаг. Широчайшая линейка молекул, без дела хранившихся на полках химических лабораторий текстильной промышленности, с тем же успехом могла располагаться на другом континенте.
Только через пятьдесят лет со времен эксперимента Вёлера продукты красильной индустрии наконец физически соприкоснулись с живыми клетками. В 1878 году в Лейпциге двадцатичетырехлетний студент-медик Пауль Эрлих, ища себе тему для работы, предложил использовать текстильные красители — анилин и его разноцветные производные — для окраски животных тканей. Эрлих надеялся, что в самом лучшем случае красители помогут детальнее рассмотреть ткани под микроскопом. Но, к своему изумлению, обнаружил, что эти красители красят отнюдь не все подряд и без разбора. Производные анилина окрашивали лишь определенные части клетки, обрисовывая одни структуры и не затрагивая остальных. Складывалось впечатление, что они способны различать внутриклеточные химические вещества — связываться с одними и не связываться с другими.
Эта молекулярная специфичность, столь ярко выраженная в реакции между красителем и клеткой, не давала Эрлиху покоя. В 1882 году, работая с Робертом Кохом, он обнаружил еще одну современную химическую краску, на этот раз для микобактерий — микроорганизмов, которые, как установил Кох, вызывают туберкулез. Через несколько лет Эрлих открыл, что если инъецировать животным определенные токсины, то у них образуются антитоксины, связывающие и нейтрализующие эти яды с удивительной избирательностью (впоследствии эти антитоксины получили название антител). Он выделил из лошадиной крови сильнодействующую сыворотку против дифтерийного токсина, а затем перебрался в Институт разработки и контроля сывороток в Штеглице, где наладил промышленное производство этой сыворотки, после чего основал во Франкфурте собственную лабораторию.
Однако чем шире Эрлих исследовал биологический мир, тем чаще возвращался к изначальной своей идее. Биологическая вселенная полна молекул, избирающих себе партнеров, — совсем как хороший замок, который открывается только определенным ключом: токсины неразделимо связываются с антитоксинами, красители обрисовывают только определенные части клетки, химические краски ловко выделяют из смеси микробов только один класс микроорганизмов. Если биология, рассудил Эрлих, — всего лишь изощренная игра химических соединений в «найди пару», то вдруг какое-либо химическое вещество способно отличать бактериальные клетки от животных и убивать болезнетворные микроорганизмы, не причиняя вреда больному?
Однажды вечером, возвращаясь с конференции в набитом вагоне ночного поезда из Берлина во Франкфурт, Эрлих живо описал свою идею двум коллегам по науке. «Мне пришло в голову, что… возможно найти искусственные соединения, которые бы могли по-настоящему и избирательно лечить от тех или иных недугов, а не просто приносили бы временное облегчение для того или иного симптома… Такие лечащие средства — a priori — должны уничтожать болезнетворных микробов непосредственным образом, не „действуя на расстоянии“, а лишь когда химическое вещество прикрепляется к паразиту. Паразитов можно убить только в том случае, когда препарат имеет с ними определенное сродство, специфичное соответствие».
К тому времени остальные пассажиры уже подремывали или вовсю клевали носом. Однако этот мимолетный разговор в вагоне содержал в себе одну из важнейших медицинских идей в ее чистом, первичном виде. Концепция химиотерапии, использования специфических химических веществ для лечения больного организма, родилась среди ночи.
* * *
Эрлих принялся искать свои «лечащие средства» в знакомом источнике: сокровищнице красильной химической промышленности, сыгравшей огромную роль в его юношеских биологических экспериментах. Лаборатория Эрлиха находилась поблизости от процветающих красильных цехов Франкфурта — Франкфуртской анилиновой фабрики и фирмы «Леопольд Каселла и Кº», — и ему не составляло труда достать химические красители и их производные: всего-то и надо было прогуляться через долину. Теперь, когда Эрлиху стали доступны тысячи соединений, он затеял серию экспериментов, чтобы проверить биологический эффект этих веществ на животных.
Начал он с поисков антимикробных препаратов отчасти потому, что уже знал о способности химических красителей связываться с микробными клетками. Он заражал мышей и кроликов Trypanosoma brucei, паразитом, вызывающим смертельную сонную болезнь, а потом колол животным различные химические вещества, стараясь определить, способна ли какая-либо из них остановить инфекцию. Испытав несколько сотен препаратов, Эрлих с сотрудниками получили первый антибиотик: производную ярко-рубинового красителя. Эрлих назвал ее «трипановый красный». Это название — болезнь плюс краска — вместило в себя почти век истории медицины.