Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Книги » Домашняя » Эволюция Вселенной и происхождение жизни - Пекка Теерикорпи 📕 - Книга онлайн бесплатно

Книга Эволюция Вселенной и происхождение жизни - Пекка Теерикорпи

313
0
Читать книгу Эволюция Вселенной и происхождение жизни - Пекка Теерикорпи полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 24 25 26 ... 155
Перейти на страницу:

Большие современные телескопы-рефлекторы часто имеют отверстие в центре главного зеркала, сквозь которое лучи, отраженные от вторичного зеркала, попадают на детектор излучения. Сегодня изображение регистрируют уже не глазом или фотопластинкой, а высокочувствительной ПЗС-камерой или спектрографом. Телескоп описанного типа называется кассегреновским рефлектором, поскольку его изобрел француз Г. Кассегрен (о котором очень мало известно) вскоре после создания рефлектора Ньютона. Впрочем, телескоп Кассегрена, на самом деле, был усовершенствованной версией телескопа, предложенного Джеймсом Грегори еще до Ньютона. Но Грегори не построил свой телескоп. В телескопе Кассегрена в качестве вторичного используют выпуклое зеркало; это приводит к уменьшению длины телескопа.

Важное преимущество телескопа-рефлектора состоит в том, что размер главного зеркала можно сделать гораздо больше, чем у линзы рефрактора. При этом собирается больше света и можно наблюдать более тусклые и далекие объекты. Зеркало можно поддерживать сзади по всей поверхности, в то время как линзу можно держать только по краям. После разработки методов нанесения серебра, а затем и алюминирования, вместо использовавшегося Ньютоном металла, стали применять стекло, которому даже не нужно быть прозрачным. Вообще свободный от хроматической аберрации рефлектор большого диаметра можно построить за те же деньги, что и рефрактор меньшего размера.

Хотя рефлекторы в астрономии начали успешно конкурировать с рефракторами еще в XIX веке, оставалось много задач, при решении которых предпочтение отдавалось рефракторам. Например, их использовали для точного определения положений звезд. Большие проблемы создавало наличие хроматической аберрации, но в конце концов ее удалось устранить. Это позволило осуществить мечту об измерениях расстояний до звезд.

Сегодня телескопы усложнились еще больше. Наряду с работой в визуальной области, они могут работать в рентгеновском, ультрафиолетовом, радио- и инфракрасном диапазонах, недоступных человеческому глазу. Некоторые телескопы работают в космосе, и им не мешает атмосфера, размывающая оптическое изображение и поглощающая излучение на многих длинах волн (исключая визуальный свет и радиоволны). На рис. 7.5 представлено большое зеркало, предназначенное для космического телескопа. Для радиотелескопов вместо зеркала используют вогнутую тарелку, а радиоприемник устанавливают в фокусе этой тарелки. Большая длина радиоволн делает их разрешение ниже, чем у оптического телескопа того же размера, поэтому тарелка радиотелескопа очень крупная. Бывают тарелки диаметром 100 м и даже больше, тогда как диаметр зеркала современного оптического телескопа не превышает 10 м. Радиоастрономы научились объединять сигналы с разных тарелок, имитируя одну тарелку, сравнимую с размером Земли. Это называется интерферометрией. Уровень современной электроники позволяет сделать то же самое и в оптическом диапазоне, используя несколько телескопов одной обсерватории.

Рис. 7.5. Зеркало диаметром 3,5 м, созданное финской оптической фирмой Opteon для европейского космического телескопа «Гершель». Сейчас это самый большой космический телескоп. Поверхность зеркала так отполирована, что неровности на ней не превышают нескольких тысячных долей миллиметра. Фото: Opteon.

Наконец, некоторые современные телескопы стали трудноузнаваемыми. Разработаны приборы, способные регистрировать субатомное нейтринное излучение Солнца и сверхновых звезд. Созданы детекторы гравитационных волн для обнаружения изменений полей при орбитальном движении черных дыр или их рождений в сверхновых.

Исследовательский дух очень силен в астрономии. Велико желание продвигаться все глубже и глубже в бездну Вселенной, чтобы увидеть то, чего никто никогда ранее не видел. Для обнаружения и дальнейшего исследования всех этих неожиданных небесных тел и явлений требуются телескопы все большего и большего размера.

Глава 8 Далеко ли до звезд?

Согласно Птолемею, расстояние до сферы звезд составляет 20 000 радиусов Земли. Коперник же считал это расстояние просто «огромным», поскольку звезды не демонстрируют покачиваний, вызванных годичным движением Земли вокруг Солнца. Отсутствие «годичного параллакса» отмечал еще Птолемей, который использовал это как доказательство неподвижности Земли. Для Аристарха, как и для Коперника, отсутствие параллакса свидетельствовало о безграничности Вселенной.

Коперниканская революция не только убрала Землю из центра Вселенной и придала ей движение, но и разбила вдребезги старую хрустальную сферу, с древних времен удерживающую звезды. Коперник и Кеплер все еще верили в эту самую дальнюю сферу, но фактически она стала бесполезной, когда утратила свою исходную функцию. Этот новый мировой порядок ясно описал горячий поклонник Коперника — Бруно: «Если только мы поймем, что видимость мирового движения вызвана истинным ежедневным движением Земли… то не будет оснований, которые принуждали бы нас считать все звезды одинаково далеко отстоящими от нас». Еще раньше, как мы рассказали в главе 4, Диггес отделил звезды от сферы и рассеял их в пространстве: «Эта сфера неподвижных звезд безгранично простирается во всех направлениях и оттого недвижима. Эта обитель блаженства украшена вечно сияющими бесчисленными огнями, намного превосходящими своим сиянием наше Солнце и по качеству, и по количеству».

Галилей и годичный параллакс.

Обнаружение небольшого годичного параллакса стало бы очень важным доказательством системы Коперника. К тому же это позволило бы измерить расстояния до звезд. Параллакс звезды равен углу, под которым радиус земной орбиты виден с расстояния до звезды. Он также равен половине полного изменения направления на звезду в течение года. Если параллактический угол равен 1 секунде дуги, то говорят, что звезда находится на расстоянии 1 парсек (par-sec). В названии этой единицы длины зашифровано ее определение (параллакс = 1 секунде; parallax = 1 arcsec). Один парсек (1 пк) равен 206 265 радиусам земной орбиты. На врезке 8.1 объясняется, как возникло это число. Полезно помнить, что 1 парсек равен 3,26 светового года. Один световой год — это расстояние, которое проходит луч света за год (9,46 x 1012 км).

Врезка 8.1. Длина 1 парсека.

На каком расстоянии г радиус земной орбиты R стягивает угол в 1 секунду дуги (1")? Предположим, что R — длина малого сегмента окружности радиусом r, тогда R/2πr = 1"/360°.

Поскольку вся окружность содержит 360 x 60 х 60 секунд дуги, то R/r = 2π/(360 x 60 x 60) = 1/206 265. Следовательно, 1 парсек равен 206 265 расстояниям Солнце-Земля, или 3,0857 x 1013 км. Что касается светового года, который часто используется в научно-популярной литературе, то 1 парсек = 3,26 светового года, или 1 св. год = 0,307 пк.

В своем «Диалоге» Галилей уделяет большое внимание тому, как обнаружить и доказать движение Земли. Точно так же, как на борту судна мы не чувствуем его движения, мы не можем почувствовать и постоянное вращение Земли, пока она не столкнется с каким-нибудь препятствием, которое резко остановит ее и выбросит нас к звездам, как это в кошмарной сцене описывает Сальвиати — персонаж, выражающий мысли Галилея. Однако мы можем наблюдать звезды и заметить намек на движение Земли. В то время таких намеков замечено не было. Сначала Сальвиати рассматривает случай, когда звезда расположена точно на эклиптике. Если наблюдать с движущейся Земли, то эта звезда должна за год совершить колебание вдоль эклиптики, подобное петлеобразному движению далекой планеты относительно неподвижных звезд (рис. 8.1). Но Сальвиати объясняет, что такое движение звезды очень трудно заметить, так как нужно иметь точки отсчета, расположенные намного дальше этой звезды. И эффект вообще пропадает, если все звезды находятся на небесной сфере.

1 ... 24 25 26 ... 155
Перейти на страницу:
Комментарии и отзывы (0) к книге "Эволюция Вселенной и происхождение жизни - Пекка Теерикорпи"