Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Книги » Домашняя » Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Джефф Бломквист 📕 - Книга онлайн бесплатно

Книга Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Джефф Бломквист

232
0
Читать книгу Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Джефф Бломквист полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 23 24 25 ... 66
Перейти на страницу:

Конечно, нет: мы забыли кое-что учесть. Частица описывается волновым пакетом, который рассеивается с течением времени. При наличии достаточного времени рассеяние окончательно размоет волновой пакет, так что частица может оказаться где угодно. Это увеличит диапазон значений, которые мы получим при измерении L, и перекроет нам возможность совершать сколь угодно точное вычисление скорости частицы.

Имея дело с частицей, описываемой волновым пакетом, мы все равно ограничены принципом неопределенности. Так как изначально частица находится где-то в области размером d, Гейзенберг информирует нас, что импульс частицы соответствующим образом искажается на величину h/d. Поэтому есть только один способ построения такой конфигурации циферблатов, чтобы представленная на ней частица двигалась с определенным импульсом, – нужно сделать d, то есть размер волнового пакета, очень большим. И чем больше он будет, тем меньше окажется неопределенность импульса частицы. Урок ясен: частица с хорошо известным импульсом описывается большой группой циферблатов[17]. Точнее говоря, частица с совершенно точно известным импульсом будет описана бесконечно длинной группой циферблатов, что означает бесконечно длинный волновой пакет.

Мы только что показали, что волновому пакету конечного размера не соответствует частица с определенным импульсом. Это значит, что, если измерить импульс очень большого количества частиц, которые описываются одним и тем же исходным волновым пакетом, мы не получим каждый раз один и тот же результат. Напротив, мы получим широкий набор разных ответов, и их разброс, как бы хороши мы ни были в экспериментальной физике, не может оказаться меньше, чем h / d.

Таким образом, мы можем сказать, что волновой пакет описывает частицу, которая движется с импульсом, определенным в рамках некоторого диапазона. Но уравнение де Бройля подразумевает, что в последнем предложении можно заменить слово «импульсы» словами «длины волн», потому что импульс частицы связан с волной определенной длины. Это, в свою очередь, означает, что волновой пакет должен состоять из волн разной длины. Точно так же, если частица описывается волной определенной длины, такая волна должна быть бесконечной. Кажется, нас подталкивают к выводу, что небольшой волновой пакет состоит из многих бесконечных волн разной длины. И действительно, нас побуждают двигаться по этому пути, и то, что мы описываем, хорошо знакомо математикам, физикам и инженерам. Мы входим в область математики, известную как анализ Фурье и названную в честь французского физика Жозефа Фурье.

Фурье был колоритной личностью. Среди его многочисленных достижений – губернаторство в Нижнем Египте при Наполеоне и открытие парникового эффекта. По слухам, ему нравилось заворачиваться в простыни, что в итоге привело к его безвременной кончине в 1830 году, когда он, плотно завернувшись, упал с собственной лестницы. Его главная аналитическая работа касалась теплопроводности твердого тела и была опубликована в 1807 году, хотя основная идея известна с гораздо более раннего времени.

Фурье показал, что абсолютно любая волна сколь угодно сложной формы и любого размера может быть получена сложением ряда волн-синусоид разной длины. Лучше всего показать это с помощью иллюстрации. На рис. 5.4 пунктирная кривая получается при сложении двух первых волн-синусоид на нижних графиках. Вы можете сложить их едва ли не в уме: обе волны имеют максимальную высоту в центре, так что складываются именно там, а на концах гасят друг друга. Штриховая кривая – это результат сложения всех четырех волн, показанных на нижних графиках, и в ней пик в центре еще более выражен. Наконец, непрерывная кривая показывает, что произойдет при сложении первых десяти волн, то есть четырех приведенных на иллюстрации плюс еще шести с последовательно уменьшающейся длиной. Чем больше мы добавляем волн, тем больше подробностей можем увидеть в результате. Волновой пакет на верхнем графике может описать локализованную частицу, в отличие от волнового пакета, изображенного на рис. 5.3. Таким образом, появляется реальная возможность синтезировать волну любой формы – и все это с помощью сложения простых волн-синусоид.


Рис. 5.4. Верхний график: сложение нескольких волн-синусоид дает в результате волновой пакет с резким пиком. Пунктирная кривая состоит из меньшего количества волн, чем штриховая, а та, в свою очередь, из меньшего, чем непрерывная. Нижние графики: первые четыре волны составляют волновой пакет на верхнем графике


Уравнение де Бройля сообщает нам, что каждая волна на нижних графиках рис. 5.4 соответствует частице с определенным импульсом, и этот импульс увеличивается с уменьшением длины волны.

Теперь становится более понятно, почему частица, описываемая локализованной группой циферблатов, должна обязательно иметь диапазон импульсов.

Продолжим пояснения и предположим, что частица описывается группой циферблатов, представленных непрерывной кривой на верхнем графике рис. 5.4[18]. Мы только что выяснили, что эту частицу можно описать и рядом гораздо более длинных групп циферблатов: первая волна с нижнего графика, плюс вторая волна с нижнего графика, плюс третья волна с нижнего графика и т. д. В этом случае в каждой точке оказывается несколько циферблатов (по одному из каждой длинной группы), которые мы должны сложить, чтобы получился единичный циферблат, представленный на верхнем графике рис. 5.4. Выбор метода представления частицы полностью зависит от вас: можно считать, что она представлена одним циферблатом в каждой точке (в этом случае размер циферблата непосредственно поясняет, где вероятнее всего обнаружить частицу, а именно в окрестности пика верхнего графика рис. 5.4). Или же можно считать, что она описывается как математический ряд циферблатов в любой точке, каждый из которых соответствует одному из возможных значений импульса частицы. Таким способом разложения в ряд мы напоминаем себе, что частица, локализованная в небольшой области пространства, не имеет определенного импульса. Невозможность построить компактный волновой пакет из волн одной-единственной длины – очевидная особенность математики Фурье.

Такой образ мысли дает возможность по-новому взглянуть на принцип неопределенности Гейзенберга. Он утверждает, что мы не можем описать частицу как локализованную группу циферблатов, если эти циферблаты соответствуют волнам только одной длины. Напротив, чтобы циферблаты отменяли друг друга за пределами локализованной области, мы обязаны смешивать волны разной длины, а следовательно, и разного импульса. Итак, цена, которую мы платим за локализацию частицы в какой-то области пространства, состоит в том, что мы не знаем ее импульса. Более того, чем сильнее мы ограничиваем область возможного местоположения частицы, тем больше волн разной длины нужно добавлять и тем хуже мы знаем импульс частицы. Именно это и составляет содержание принципа неопределенности, и очень приятно, что мы пришли к тому же выводу иным путем[19].

1 ... 23 24 25 ... 66
Перейти на страницу:
Комментарии и отзывы (0) к книге "Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Джефф Бломквист"