Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Книги » Домашняя » Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности - Несса Кэри 📕 - Книга онлайн бесплатно

Книга Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности - Несса Кэри

285
0
Читать книгу Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности - Несса Кэри полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 21 22 23 ... 96
Перейти на страницу:

Представьте себе хромосому в виде ствола огромной новогодней елки. Ее ветви, раскинувшиеся во все стороны по всей высоте дерева, это гистоновые отростки, которые могут быть украшены эпигенетическими модификациями. Мы берем фиолетовые шары и вешаем один, два или три фиолетовых шара на некоторые ветви. У нас также есть зеленые сосульки, и мы можем повесить одну или две из них на разные ветви, на некоторых из которых уже висят фиолетовые шары. Затем мы берем красные звезды, но знающие люди сказали нам, что ими нельзя украшать ветви, по соседству с которыми висит хоть один фиолетовый шар. Золотые снежинки и зеленые сосульки запрещается вешать на одни и те же ветви. И чем дальше, тем сложнее и запутаннее становятся правила, которым мы должны следовать, наряжая нашу елку. В конце концов, мы развесили все наши украшения и обернули елку электрической гирляндой. Лампочки на ней — это отдельные гены. Эта гирлянда оснащена удивительным программным обеспечением, меняющим яркость свечения каждой лампочки в строгой зависимости от того, какие елочные игрушки находятся рядом. И мы будем практически не в состоянии предугадать, с какой яркостью станут гореть все лампочки на нашей гирлянде, потому что схема расположения украшений на елке чрезвычайно сложна.

Именно в таком положении и находятся на настоящий момент ученые, пытающиеся предсказать, как все разнообразные комбинации гистоновых модификаций влияют в своей совокупности на экспрессию генов. Во многих случаях бывает вполне понятно, чего ожидать от какой-либо одной модификации, но делать сколько-нибудь точные предположения об их комбинированном влиянии не представляется возможным.

Огромные усилия прикладываются учеными для того, чтобы научиться понимать этот код; многочисленные лаборатории по всему миру и сотрудничают, и соперничают друг с другом в попытках привлечь самые быстрые и сложные технологии к решению этой проблемы. Причина этого в том, что, пусть мы и не можем пока прочесть этот код правильно, но мы знаем о нем достаточно, чтобы понимать, насколько он важен.

Построить усовершенствованную мышеловку

Много очень важной информации мы получаем из области биологии развития — науки, из которой пришли в эпигенетику многие выдающиеся исследователи. Как мы уже говорили выше, после деления одноклеточной зиготы ее дочерние клетки очень быстро начинают приобретать индивидуальные функции. Первое примечательное событие, происходящее при делении клеток, заключается в том, что клетки эмбриона на самых ранних стадиях своего развития начинают разделяться на внутриклеточную массу (ВКМ) и трофоэктодерму. Клетки ВКМ, в частности, начинают дифференцироваться и образовывать постоянно увеличивающееся количество клеток разнообразных типов. Этот спуск клеток по склонам эпигенетического ландшафта к его ложбинам является в большой степени процессом постоянным и самовозобновляющимся.

Главная идея, которую нам нужно уловить на этом этапе, состоит в представлении о том, каким образом волны экспрессии генов и эпигенетических модификаций следуют друг за другом и вытекают друг из друга. Подходящей аналогией для проникновения в суть этого процесса для нас может стать игра «Мышеловка», впервые появившаяся в начале 1960-х годов, но продолжающая пользоваться популярностью и в наши дни. В ходе игры ее участники должны построить безумно сложную мышеловку. Чтобы активировать мышеловку, в нее нужно запустить шарик. Этот шарик прокатывается через самые разнообразные и хитроумные приспособления, которыми могут быть и горка, и катапульта, и ряд ступенек, и человечек, прыгающий в воду с трамплина. Если все до единой детали головоломки размещены относительно друг друга правильно, то эта головокружительная конструкция работает как часы, и игрушечная мышка оказывается захваченной в сети. Но если лишь один ее элемент стоит чуть-чуть не на своем месте, то он выбивается из общего ряда, вся последовательность нарушается, и ловушка не срабатывает.

Развитие эмбриона во многом похоже на эту игру. Зигота заранее загружена определенными белками, полученными главным образом из цитоплазмы яйцеклетки. Эти приобретенные из яйцеклетки белки проникают в ядро, в котором прикрепляются к своим целевым генам (которые мы в честь «Мышеловки» будем называть «катапультами») и регулируют их экспрессию. Кроме этого, они притягивают к генам «катапульт» некоторые выбранные ими эпигенетические ферменты, Эти эпигенетические ферменты также могут быть позаимствованы в цитоплазме яйцеклетки, и они вызывают более продолжительные модификации ДНК и гистоновых белков хроматина, одновременно влияя и на то, как активируются или подавляются эти «катапультные» гены. Белки «катапульт» прикрепляются к генам «ныряльщиков» и активируют их. Некоторые гены «ныряльщиков» сами могут кодировать эпигенетические ферменты, что оказывает уже свое влияние на членов семейства генов «горок» и так далее. Генетические и эпигенетические белки работают в безупречно упорядоченном режиме, аналогично тому, как это происходит в «Мышеловке» после того, как в нее запускается шарик.

Иногда фактор, экспрессия которого «балансирует на грани тонко настроенного равновесия, экспрессируется клеткой с небольшим отклонением в одну или другую сторону. В этом случае возникает вероятность изменения пути развития, по которому движется клетка, как могло бы быть, если двадцать «Мышеловок» соединить друг с другом. Едва уловимые отклонения в том, как элементы головоломки соотносятся друг с другом или, как катится шарик в критические моменты, способны активировать одну ловушку и отключить другую.

Примеры в предложенной аналогии придуманы нами, но мы можем рассматривать их как реально существующие. Одним из ключевых белков на самых ранних стадиях эмбрионального развития является Oct4. Белок Oct4 присоединяется к определенным ключевым генам и одновременно притягивает конкретный эпигенетический фермент. Этот фермент модифицирует хроматин и меняет регуляцию гена. И Oct4, и эпигенетический фермент, с которым тот взаимодействует, жизненно важны для эмбриона на ранних стадиях его развития. Если один из них отсутствует, зигота не сможет развиться даже до того, чтобы сформировать ВКМ.

Схемы экспрессии генов на ранних этапах развития эмбриона, в конечном счете, регулируются автоматически. Когда экспрессируются определенные белки, они могут связаться с промотором Oct4 и подавить экспрессию этого гена. В обычных условиях соматические клетки не экспрессируют Oct4. Это было бы для них слишком опасно, поскольку Oct4 мог бы нарушить нормальную схему экспрессии генов в дифференцированных клетках и превратить их в некое подобие стволовых клеток.

Именно это и проделал Шинья Яманака, когда использовал Oct4 в качестве перепрограммирующего фактора. Искусственно создав очень высокие уровни содержания Oct4 в дифференцированных клетках, он сумел «обмануть» клетки и вынудить их вести себя так, как будто они находились на ранних стадиях развития. Даже эпигенетические модификации были аннулированы — вот насколько велика сила этого гена.

Нормальное развитие предоставляет нам важные доказательства необходимости эпигенетических модификаций для контроля участи клетки. Не менее наглядно демонстрируют нам значение эпигенетики и те случаи, когда развитие идет по неверному пути.

Так, в одной из публикаций журнала Nature Genetics в 2010 году были приведены примеры мутации, вызывающей редкое заболевание, которое называется синдромом Кабуки. Синдром Кабуки представляет собой комплексное нарушение развития, характеризуемое целым рядом симптомов, в том числе, таких как врожденное слабоумие, низкий рост, патологии лица и расщелина неба. В статье отмечалось, что синдром Кабуки провоцируется мутациями в гене под названием MLL2[29]. Белок MML2 является эпигенетическим шифровальщиком, добавляющим метиловые группы к определенной лизиновой аминокислоте в позиции 4 на гистоне H3. Белки с такой мутацией не способны прочесть эпигенетический код правильно, вследствие чего и возникают такие симптомы.

1 ... 21 22 23 ... 96
Перейти на страницу:
Комментарии и отзывы (0) к книге "Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности - Несса Кэри"