Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Книги » Домашняя » Популярная физика. От архимедова рычага до квантовой теории - Айзек Азимов 📕 - Книга онлайн бесплатно

Книга Популярная физика. От архимедова рычага до квантовой теории - Айзек Азимов

264
0
Читать книгу Популярная физика. От архимедова рычага до квантовой теории - Айзек Азимов полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 212 213 214 ... 237
Перейти на страницу:

Основной теоретический интерес к этим элементам заключается в том, что они Пролили свет на верхнюю часть периодической таблицы. До открытия трансурановых элементов, на основе некоторых опытных химических данных, торий в периодической таблице поместили под гафнием, протактиний — под танталом, а уран — под вольфрамом.

Согласно этому принципу, открытый нептуний следовало бы поместить перед рением. Однако химические свойства нептуния были аналогичны свойствам урана и трансурановых элементов. Оказалось (Сиборг первым предположил это), что элементы начиная с актиния образовывали новый ряд «редкоземельных» элементов (см. гл. 1), соответственно их нужно поместить под первым рядом редкоземельных элементов (от лантана и далее), что и сделано в периодической таблице (см. гл. 1).

Первый ряд, от лантана до лютеция включительно, сегодня называют лантаноидами, по названию первого члена этого ряда. По аналогии второй ряд, от актиния до лавренция включительно, называют актинидами. Лавренций является последним членом ряда актинидов, и химики уверены, что, как только элемент 104 удастся получить в достаточном для изучения его химических свойств количестве, окажется, что он по своим свойствам будет похож на гафний.

Хотя периоды полураспада некоторых изотопов трансурановых элементов и длинные по человеческим меркам, по меркам геологическим все они слишком короткие. (Тем не менее следы нептуния и плутония были найдены в урановых рудах. Они появились в результате взаимодействия нейтронов и урана, вызванного ядерной реакцией, возникающей под действием космических излучений высокой энергии.)

Особенный интерес представляет нептуний–237. В результате деления его массового числа на 4 остаток равен 1, значит, нептуний–237 принадлежит к ряду элементов 4x + 1. Элементы этого радиоактивного ряда в природе не встречаются (см. гл. 8). Период полураспада нептуния–237 более 2 миллионов лет, и, по последним сведениям, это самый долгоживущий элемент данного ряда. Значит, нептуний–237 вполне может быть родительским элементом нептуниевого ряда. Его дочерние элементы не повторяют ни один из элементов трех других радиоактивных рядов (см. табл. 12).

Основной чертой нептуниевого ряда является то, что он, в отличие от трех других рядов, заканчивается висмутом, а не свинцом. Раз родительский элемент не дошел до наших дней, то не дошли и менее долгоживущие дочерние элементы. Из всего ряда встречается только конечный стабильный изотоп — висмут–209.

Таблица 12.


Глава 11.
СТРУКТУРА ЯДРА
Нуклоны, четность и нечетность

Когда перед глазами весь список изотопов — стабильных и нестабильных, — можно сделать определенные утверждения о структуре ядра.

Для начала возьмем атом, ядро которого состоит из одного лишь протона. Получим атом водорода–1. Ядро не может содержать больше одного электрона, если в нем нет нейтронов. Среди элементов с маленькими атомами стабильные ядра состоят из равного или почти равного количества протонов и нейтронов. Так, у ядра водорода–2 1 протон и 1 нейтрон, у гения-4 — 2 протона и 2 нейтрона, у углерода–12 — 6 протонов и 6 нейтронов, у кислорода–16 — 8 протонов и 8 нейтронов, у серы–32 — 16 протонов и 16 нейтронов, у кальция–40 — 20 протонов и 20 нейтронов.

Дальше ситуация меняется. Стабильные ядра всех элементов тяжелее кальция–40 содержат больше нейтронов, чем протонов, причем чем выше массовое число, тем больше дисбаланс между нейтронами и протонами. Так, ядро наиболее распространенного изотопа железа — железо–56 — состоит из 26 протонов и 30 нейтронов, то есть соотношение нейтронов и протонов (n/p) равно 1,15. Ядро наиболее распространенного изотопа серебра — серебро–107 — состоит из 47 протонов и 60 нейтронов, соотношение n/p равно 1,27. Ядро единственного стабильного изотопа висмута — висмута–209 — состоит из 83 протонов и 126 нейтронов, соотношение n/p равно 1,52. Ядро наиболее тяжелого из встречающихся в природе изотопов урана — урана–238 — состоит из 92 протонов и 146 нейтронов, то есть соотношение n/p равно 1,59.

Очевидно, что чем больше протонов содержится в ядре, тем больше избыточных нейтронов необходимо для поддержания стабильности ядра. (Хотя конечно же слишком большой избыток нейтронов — это так же плохо, как и их недостаток.)

Понятно, что существование парных протонов оказывает на ядро стабилизирующий эффект. Из всех атомных ядер, состоящих из более чем одного нуклона, ядра с парными протонами (имеющие четное атомное число) более распространены во Вселенной. 98% нашей планеты (как коры, так и внутренней ее части) состоит из 6 основных элементов: железа, кислорода, магния, кремния, серы и никеля. Атомные числа этих элементов соответственно 26, 8, 12, 14, 16 и 28. Как вы видите, все четные.

Четные количества нейтронов по сравнению с нечетными легко стабилизируются. Для элементов выше 83, сколько бы ни было нейтронов, стабильности все равно добиться невозможно. Однако два элемента этой группы почти стабильные — это торий и уран, атомные числа которых четные (90 и 92). С другой стороны, среди всех элементов с атомными числами до 83 только два вообще не имеют стабильных изотопов. Это технеций и прометий, атомные числа которых нечетные (43 и 61).

Теперь рассмотрим количество изотопов на элемент. У 21 элемента только один встречающийся в природе изотоп. Из них только у двух элементов четные атомные числа: у бериллия (4), у тория (90). У оставшихся 19 элементов атомные числа нечетные. Есть еще 23 элемента, у которых два встречающихся в природе изотопа. Опять-таки только у двух из них атомные числа четные: у гелия (2), у урана (92). У оставшихся 21 элемента атомные числа нечетные.

Видимо, при наличии нечетного числа протонов в ядре стабильность возможна только в случае одного, максимум двух определенных наборов нейтронов. Только один элемент с нечетным атомным числом имеет три изотопа — это калий (атомное число 19). Его изотопы: калий–39, калий–40 и калий–41. Однако калий–40 все же проявляет слабые радиоактивные свойства и в природе встречается достаточно редко.

С другой стороны, все элементы (кроме четырех) с четными атомными числами имеют более двух встречающихся в природе изотопов, а у олова (атомное число 50) их целых 10. Похоже, при наличии четного числа протонов в ядре достичь стабильности настолько легко, что она возможна практически при любом количестве нейтронов в ядре.

Нейтроны также чаще всего встречаются парами. Наиболее распространенными изотопами шести элементов, составляющих 98% Земли (см. выше), являются железо–56, кислород–16, магний–24, кремний–28, сера–32 и никель–58. Содержание протонов и нейтронов равно 26–30, 8–8, 12–12, 14–14, 16–16 и 28–30. Во всех случаях количество и нейтронов и протонов четное («четно-четное ядро»).

У элементов с нечетным атомным числом, имеющих лишь один встречающийся в природе изотоп, ядра этих изотопов содержат четное количество нейтронов («нечетно-четное ядро»). Например, фтор–19 (9 протонов, 10 нейтронов), натрий–23 (11 протонов, 12 нейтронов), фосфор–31 (15 протонов, 16 нейтронов) и золото–197 (79 протонов, 118 нейтронов).

1 ... 212 213 214 ... 237
Перейти на страницу:
Комментарии и отзывы (0) к книге "Популярная физика. От архимедова рычага до квантовой теории - Айзек Азимов"