Книга Журнал "Наука. Величайшие теории" №2. Самая притягательная сила природы. Ньютон. Закон всемирного тяготения - Антонио Дуран
Шрифт:
Интервал:
Закладка:
«В дальнейшем я буду называть флюентами, или текущими величинами, величины, которые я рассматриваю как постепенно и неопределенно возрастающие; обозначать я их буду последними буквами алфавита u, у, х и z, чтобы их было возможно отличать от других величин, которые рассматриваются в уравнениях как известные и определенные и которые поэтому обозначаются первыми буквами алфавита а, b, с и т.д. Скорости, с которыми возрастают вследствие порождающего их движения отдельные флюенты (и которые я называю флюксиями, или просто скоростями или быстротами), я буду обозначать теми же буквами, но пунктированными, например v', х', у', z'».
Чтобы продемонстрировать потенциал своего анализа бесконечно малых, Ньютон применил его в работе «О методе» (De methodis) при решении почти всех задач о расчете площадей, касательных, кривых, объемов или расстояний, максимальных и минимальных величин, центров тяжести и рассмотрении других вопросов, которые занимали умы его предшественников в течение почти века. В работе «О методе» (De methodis) очевиден вклад Ньютона в открытие анализа: он четко определил понятия флюенты и флюксии как элементов теории, дал простые алгоритмы для расчета флюксии флюенты, а также привел примеры задач, которые новые понятия позволяют решить. Это разграничение абстрактных элементов теории и ее конкретного применения для решения колоссального количества задач позволяет признать за Ньютоном – и Лейбницем – открытие анализа.
МАКСИМУМЫ И МИНИМУМЫ
Одно из многочисленных применений анализа бесконечно малых – это определение максимальных и минимальных значений функции, фундаментальных, к примеру, для процессов оптимизации в технике. Сравним кривую, описанную функцией у = х³ -3х.
Ясно, что у функции есть абсолютный минимум и максимум. Если проследить за ней слева, кривая стремится к бесконечности вниз; если справа, кривая идет к бесконечности вверх. Максимальное и минимальное значения, соответственно, +oo и -oo.
Но вместе с этими абсолютными значениями есть другие точки кривой, которые являются максимальными и минимальными точками, а именно:
(-1; 2) и (1; -2). Метод анализа бесконечно малых Ньютона позволяет легко определить такие точки, опираясь на понятие производной. Одним из свойств производной является то, что ее значение в заданной точке – то же, что и значение наклона касательной к функции в той же точке. Однако в точке максимума или минимума касательная является горизонтальной прямой и ее наклон равен нулю.
Следовательно, производная функции в указанной точке тоже будет равна нулю. В нашем примере f(x) = х³ -3х, производная f'(x) = 3х² -3. Соответственно, нас интересуют значения х, при которых выполняется равенство 3х² -3 = 0. Как и можно было ожидать, мы получим значения х = 1 и х = -1.
ИРРАЦИОНАЛЬНЫЙ СТРАХ ПУБЛИКАЦИЙ
Читатель наверняка уже заметил некоторые детали, связанные с двумя упомянутыми работами Ньютона. Первую, «Анализ», ученый написал в 1669 году, но не публиковал ее целых 42 года, до 1711-го! А вторая, «О методе», была закончена в 1671 году, но увидела свет только в 1736-м, то есть через 65 лет после ее завершения и через девять лет после смерти Ньютона! Следует отметить, что в те годы термин «публиковать» имел несколько иное значение, нежели сейчас. Сегодня «публиковать» означает «доводить что-либо до сведения заинтересованных лиц посредством периодического издания или книги», но тогда таких каналов, как периодические издания, например журналы, практически не существовало, распространение они получили несколько десятилетий спустя. Для современников Ньютона «публиковать» означало выпустить рукопись, причем даже необязательно в печатной форме, для ограниченной группы заинтересованных людей. Несмотря на уговоры, Ньютон всячески уклонялся от того, чтобы обнародовать свои работы, и это можно считать проявлением одной из фобий ученого.
Прекрасно иллюстрируют эту фобию меры предосторожности, которые предпринял автор «Анализа» при публикации работы. Как только трактат был написан и весь мир должен был узнать о новом гении, Ньютон показал работу Исааку Барроу, который в то время был лукасовским профессором в Кембридже. Лукасовская кафедра, единственная из восьми кафедр университета, специализировалась, как мы бы сказали сейчас, на математике и натурфилософии. Барроу был в некотором роде предтечей анализа, он ближе кого бы то ни было подошел к Ньютону и Лейбницу в своих открытиях, но незнание аналитической геометрии Декарта не позволило ему развить алгоритмические методы, применяющиеся в анализе бесконечно малых. Когда Ньютон показал ему свою работу, Барроу предложил немедленно отправить трактат Джону Коллинзу, члену Королевского общества, который занимался распространением информации о последних достижениях и новостей в области математики. Тут Ньютон впервые проявил свое нежелание публиковаться: ведь показывать свой труд публике, заявив об открытии, означало также подвергнуть себя критике.
Титульный лист сохранившегося издания «Анализа».
Расчет площадей в первой тетради, посвященной Ньютоном исключительно математическим вопросам. Начало 1660-х.
Расчет бесконечных рядов из тетради, куда Ньютон записывал большую часть своих работ, связанных с анализом.
В начале июля 1669 года Ньютон позволил Барроу лишь проинформировать Коллинза, что он получил в свое распоряжение «Анализ», но запретил упоминать имя автора. Барроу отправил Коллинзу записку следующего содержания: