Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Разная литература » Интернет-журнал "Домашняя лаборатория", 2008 №4 - Журнал «Домашняя лаборатория» 📕 - Книга онлайн бесплатно

Книга Интернет-журнал "Домашняя лаборатория", 2008 №4 - Журнал «Домашняя лаборатория»

149
0
Читать книгу Интернет-журнал "Домашняя лаборатория", 2008 №4 - Журнал «Домашняя лаборатория» полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 19 20 21 ... 150
Перейти на страницу:
в процессе синтеза они могут успеть процессировать.

Элонгационный комплекс довольно стабилен, т. к. он должен выполнить большую работу. То есть, сам по себе он с ДНК не «свалится». Он способен перемещаться по ДНК со скоростью до 50 нуклеотидов в секунду. Этот процесс называется перемещение (или, транслокация). Взаимодействие ДНК с РНК-полимеразой (кор-ферментом) не зависит от последовательности этой ДНК, в отличие от σ-субъединицы. И кор-фермент при прохождении определенных сигналов терминации завершает синтез ДНК.

Разберем более подробно молекулярную структуру кор-фермента. Как было сказано выше, кор-фермент состоит из α- и β-субъединиц. Они соединены так, что образуют как бы «пасть» или «клешню». α-субъединицы находятся в основании этой «клешни», и выполняют структурную функцию. С ДНК и РНК они, по-видимому, не взаимодействуют, ω-субъединица — небольшой белок, который также выполняет структурную функцию. Основная часть работы приходится на долю β- и β'-субъединиц. На рисунке β'-субъединица показана наверху, а β-субъединица — внизу.

Внутри «пасти», которая называется главным каналом, находится активный центр фермента. Именно здесь происходит соединение нуклеотидов, образование новой связи при синтезе РНК. Главный канал в РНК-полимеразе — это то место, где во время элонгации находится ДНК. Еще в этой структуре сбоку есть так называемый вторичный канал, по которому подаются нуклеотиды для синтеза РНК.

Распределение зарядов на поверхности РНК-полимеразы обеспечивает ее функции. Распределение очень логично. Молекула нуклеиновой кислоты заряжена отрицательно. Поэтому полость главного канала, где должна удерживаться отрицательно заряженная ДНК, выложена положительными зарядами. Поверхность РНК-полимеразы выполнена отрицательно заряженными аминокислотами, чтобы ДНК к ней не прилипала.

РНК-полимераза работает как молекулярная машина, и в ней есть различные детали, каждая из которых выполняет свою функцию. Например, нависающая над "пастью" часть β'-субъединицы удерживает передний ДНК-дуплекс. Эта часть называется "заслонкой". После связывания с ДНК заслонка опускается, проходя путь в 30 ангстрем, и зажимает ДНК так, чтобы она не могла выпасть в процессе транскрипции.

Внутри "пасти" находится активный центр РНК-полимеразы, то есть то место, где непосредственно происходит комплементарное взаимодействие поступившего по боковому каналу рибонуклеоиздтрифосфата с ДНК-матрицей. Если вновь прибывший нуклеотид комплементарен матрице, то он ферментативно пришивается к свободному β' — концу РНК. По характеру реакция образования новой связи в РНК относится к реакциям нуклеофильного замещения. В ней участвуют два иона магния. Один ион постоянно находится в активном центре, а второй ион магния поступает с нуклеотидом и после образования новой связи между рибонуклеотидами уходит, затем поступает новый нуклеотид со своим новым ионом магния.

При выходе из РНК-полимеразы ДНК-РНК гибрид должен быть расплетен. В этом участвует структура, называемая "шип".

В транслокации, то есть перемещении РНК-полимеразы по нити ДНК, участвует а-спиральная структура, снизу вверх торчащая из β-субъединицы.

Как же узнали, какая часть фермента какую роль выполняет. Молекулярные биологи поступают следующим образом. Они удаляют часть белковой последовательности и смотрят, какая функция исчезла. Было показано, что если выбросить фрагмент зажима (когда его выбрасывали, еще не знали, что он держит ДНК), то ДНК держаться не будет. Такой же результат получается, если удалить ДНК переднего дуплекса. Оставшаяся часть — РНК-ДНК гибрид и задний дуплекс — оказываются слабо связанными с РНК-полимеразой.

Известно, что магний координирует связь между фосфатами растущей молекулы ДНК и фосфатами вновь входящих нуклеотидов. При этом происходит последовательность реакций, называемых реакциями нуклеофильного замещения. Известно, каким образом меняются связи внутри этого комплекса. Новый нуклеотид приходит, будучи связанным с еще одним ионом магния. Новый нуклеотид таким образом взаимодействует с растущей цепью ДНК. В конце реакции, второй ион магния выводится из активного центра фермента.

РНК-полимераза является представителем молекулярных машин. Помимо того, что в начале синтеза ДНК опускается заслонка, меняется конформация других частей РНК-синтазы, в ней во время роста цепи РНК происходят циклические изменения, не такие сильные, как при начале синтеза цепи. В начале заслонка опускается на 30 А°, а при каждом шаге фермента ДНК протягивается на один нуклеотид. В перемещении по ДНК участвует элемент РНК-полимеразы F-спираль (альфа-спиральная структуры, точащая из бета-субъединицы вверх в главный канал). F-спираль при этом изгибается, перемещается вместе с комплексом РНК-ДНК, освобождается от них и опять выпрямляется. Перемещается F-спираль за один шаг на 3,4 А. Именно такой шаг у РНК-полимеразы.

Изменение конформации различных частей РНК-полимеразы происходит за счет изменения потенциальной энергии, что связано с электростатическими и гидрофобными взаимодействиями. Можно провести следующую аналогию. Если взять поднос с горкой яблок, то после того, как мы этот поднос потрясем, яблоки будут рассыпаться ровным слоем по подносу. У них при этом изменится потенциальная энергия, связанная с действием силы тяжести. Если молекулу РНК-синтазы «потрясти» (а «трясет» ее, также как и все другие молекулы в клетке, броуновское движение), то она начнет принимать конформацию с более низкой потенциальной энергией. То есть, источником движения молекулярной машины является энергия теплового движения отдельных ее составляющих, а устройство машины таково, что это движение приводит к нужному результату. При этом молекулярная машина потребляет энергию, которая, в основном, идет на изменение состояния тех или иных связей.

Сейчас остановимся на инициации транскрипции. Как уже говорилось, инициация осуществляется с участием а-субъединицей. Она взаимодействует со структурой ДНК, которая называется промотор. Она имеет у кишечной палочки такую структуру. За десять нуклеотидов до точки инициации находится ТАТА-бокс. Не обязательно стоит именно такая последовательность, но она является "идеальной" последовательностью для взаимодействия с а-субъединицей, то есть такой, с которой транскрипция инициируется наиболее эффективно. Замена отдельных нуклеотидов в этой последовательности снижает эффективность инициации транскрипции. Еще примерно за 35 нуклеотидов до него находится структура, называемая «-35». Эту последовательность также распознает а-субъединица. Эту структуру (сочетание последовательностей "-10" и "-35") назвали классическим промотором, т. к. она была описана первой. Но оказалось, что устройство промотора может быть и другим. Этот вариант включает в себя тот же ТАТА-бокс, но нет последовательности «-35», однако есть дополнительно два нуклеотида, и этого достаточно, чтобы а-субъединица распознала промотор.

Эта структура называется расширенным промотором. σ-субъединица РНК-полимеразы садится на промотор в ДНК и разными частями белковой молекулы взаимодействует с частями промотора. Распознает его σ-субъединица через большую бороздку ДНК. После того, как σ-субъединица в составе кор-фермента связалась с промотором, ДНК на этом участке начинает плавиться (расплетаются нити ДНК). На прошлой лекции обсуждалось, что в паре А-Т связи между нуклеотидами разрываются легче, чем в паре Г-Ц, так как последняя содержит 3 водородных связи, а первая —

1 ... 19 20 21 ... 150
Перейти на страницу:
Комментарии и отзывы (0) к книге "Интернет-журнал "Домашняя лаборатория", 2008 №4 - Журнал «Домашняя лаборатория»"