Книга Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир
Шрифт:
Интервал:
Закладка:
Чтобы помешать Саксонии стать французским сателлитом, пруссаки оккупировали ее, снова призвав в строй герцога Брауншвейгского — ему в то время был 71 год — и предложив ему возглавить их силы. Наполеон объявил войну, и его армия ударила на северо-запад через Саксонию по направлению к Берлину. Пруссаки пытались сконцентрировать силы, но французы, действуя очень быстро, не позволили им этого сделать и разгромили основные прусские силы под Йеной. Герцог находился с подразделением в Ауэрштедте в нескольких милях к северу; одна из фланговых частей Наполеона захватила его и рассеяла его войска.
Разбитый и смертельно раненный, герцог через эмиссара испросил у Наполеона разрешения удалиться домой, дабы там умереть. Император — вполне современный диктатор, не слишком приверженный правилам рыцарства — рассмеялся посланнику в лицо. Несчастного герцога, ослепшего и находящегося при смерти, поспешили на телеге перевезти на свободные территории за Эльбой. Секретарь Наполеона Луи де Бурьен в своих мемуарах так описывает печальный конец этой истории:
Герцог Брауншвейгский, тяжело раненный в битве при Ауэрштедте, прибыл в Альтону [на другом берегу Эльбы, прямо к западу от Гамбурга] 29 октября. Его въезд в этот город явил собой еще один яркий пример переменчивости судьбы. Люди взирали на суверенного принца, пользовавшегося, заслуженно или нет, репутацией великого воина и до недавнего времени могущественного и никем не тревожимого в своей столице; теперь же его, смертельно раненного, вносила в Альтону на жалких носилках лишь горстка людей, при нем не было адъютантов и слуг, а сопровождала его лишь ватага ребятишек. Пока герцог оставался жив, он не желал видеть никого, кроме своей жены, которая прибыла к нему 1 ноября. Он продолжал упорствовать в своем отказе принимать визитеров и умер 10 ноября.
Последний путь герцога пролегал через Брауншвейг, и говорят, что Гаусс видел повозку из окна своей комнаты, выходящего на крепостные ворота. Герцогство Брауншвейгское после этого прекратило свое существование и стало частью наполеоновского марионеточного «королевства Вестфалия». Наследник герцога Фридрих-Вильгельм был лишен трона и бежал в Англию. Он также погиб, сражаясь с Наполеоном в битве при Катр-Бра в 1815 году, за несколько дней до Ватерлоо, но, правда, уже после того, как получил обратно свое герцогство.
(Чтобы отдать должное Наполеону, следует заметить, что некоторое время спустя, во время другого похода в западную Германию, когда Гаусс уже обосновался в Геттингене, Император пощадил этот город — потому, что «там живет величайший математик всех времен».)
II.
После потери своего покровителя Гауссу пришлось искать работу. Ему предложили стать директором обсерватории в Геттингене, он согласился и приехал в Геттинген в конце 1807 года.[23] Геттинген уже пользовался достаточной известностью за то, что был оснащен лучше других провинциальных немецких университетов. Гаусс и сам учился здесь с 1795 по 1798 год; во время учебы его, судя по всему, привлекала великолепная университетская библиотека, в которой он и проводил большую часть времени. Теперь же он стал главным университетским астрономом и оставался в Геттингене до своей смерти в феврале 1855 года, последовавшей за несколько недель до его 78-летия. В течение последних 27 лет жизни он выбирался из любимой обсерватории лишь единожды — ради поездки на конференцию в Берлин.
Чтобы рассказать об отношениях, в каких состояли между собой Гаусс и ТРПЧ, надо объяснить главную особенность Гаусса как математика. Он опубликовал намного меньше, чем написал. Из его переписки, сохранившихся неопубликованных статей и различного рода указаний, которые можно найти в опубликованных работах, видно, что он представил миру лишь часть всех сделанных им открытий. Теоремы и доказательства, которые прославили бы кого-нибудь другого, Гаусс оставлял заброшенными в своих личных дневниках.
Есть, наверное, две причины, объясняющие столь вопиющее небрежение. Одна — отсутствие честолюбия. Уравновешенный, самодостаточный и экономный человек, лишенный материальных благ в детстве и юности и так, по-видимому, и не приобретший к ним вкуса в зрелом возрасте, Гаусс не сильно нуждался в чьем бы то ни было одобрении и не стремился к продвижению по социальной лестнице. Другая причина — намного более распространенная среди математиков во все времена — состояла в перфекционизме. Гаусс не мог заставить себя представить свои результаты на суд других, пока эти результаты не окажутся отшлифованы до блеска и расставлены в безупречном логическом порядке. На его личной печати было изображено дерево с редко висящими плодами и девизом «Pauca sed matura» — «Немного, но спелые».
Как я сказал, перфекционизм — частая проблема среди математиков, из-за которой чтение опубликованных математических статей нередко превращается в очень тяжелое занятие. В одной из книг, получивших некоторую известность в современной психологической литературе, «Представление себя в повседневной жизни», Эрвинг Гоффман развивает теорию «социальной драматургии», согласно которой каждый результат деятельности, создаваемый «для внутреннего пользования» в беспорядке и не без вмешательства случайности, представляется «для внешней аудитории» в виде законченного и совершенного творения. Эту мысль хорошо иллюстрируют рестораны. Блюда, приготовленные среди стука и звона посуды, криков поваров в раскаленной кухне, предстают перед публикой как творения безупречно сервированные, на сверкающих тарелках, подаваемые проворными мурлыкающими официантами. В значительной своей части так же устроен и интеллектуальный труд. Вот что пишет Гоффман:
В тех взаимодействиях, где индивид представляет результат своей деятельности другим людям, он склонен обнародовать только конечный продукт; они же судят о нем на основе вещей законченных, отполированных и расфасованных. В ряде случаев, если для завершения деятельности было достаточно лишь очень небольшого усилия, этот факт будет скрыт. В других случаях сокрытию подлежат долгие, изнурительные часы одинокого труда…
Опубликованные математические статьи нередко содержат слегка раздражающие высказывания типа «Отсюда следует, что…» или же «Ясно, что…», тогда как в действительности совершенно не следует и абсолютно не ясно, пока вы не потратите те же шесть часов, что потратил автор, на прописывание промежуточных шагов и проверку их правильности. Об английском математике Г.X. Харди, с которым мы еще встретимся ниже, рассказывают такую историю. Дойдя на лекции до определенного места в своих рассуждениях, он сказал: «Теперь очевидно, что…» Тут он остановился, замолчал и несколько секунд простоял без движения с нахмуренными бровями. Потом вышел из аудитории. Минут через двадцать он вернулся, улыбаясь, и продолжил: «Да, действительно, очевидно, что…»
Но кроме отсутствия амбиций Гаусс демонстрировал и отсутствие такта. Он нажил массу неприятностей в общении с коллегами-математиками из-за того, что ссылался на открытия, которые он сделал, но не опубликовал за годы до того, как другие открывали то же самое, однако публиковали свои результаты. Дело было не в тщеславии — Гауссу не было свойственно тщеславие, — а в том, что доктор Джонсон называл «грубой бесчувственностью». Например, в опубликованной в 1809 году книге Гаусс ссылается на метод наименьших квадратов, придуманный им в 1794 году (способ найти наилучшую «подгонку» для некоторого количества экспериментальных данных). В момент, когда он сделал это открытие, он его, разумеется, не опубликовал. Принадлежащий к чуть более старшему поколению французский математик Адриен-Мари Лежандр открыл и опубликовал этот метод в 1806 году; он был разъярен, когда Гаусс приписал приоритет открытия себе. У нас нет сомнений в правоте Гаусса — тому имеются документальные подтверждения, — но если Гаусс желал, чтобы его имя ассоциировалось с этим результатом, ему надо было его опубликовать. Он, однако, не беспокоился, будет ли увековечено его имя, и не намеревался публиковать свои результаты, если ему не хватало времени отполировать их до полного совершенства.