Книга Страх физики. Сферический конь в вакууме - Лоуренс Краусс
Шрифт:
Интервал:
Закладка:
Если задуматься, то все это очень странно. Откуда свет заранее может знать, какой путь является самым быстрым? Не может же он «обнюхать» все возможные пути, прежде чем окончательно выбрать правильный? Разумеется, нет. Он просто повинуется локальным физическим законам, которые говорят ему, что следует делать в каждый конкретный момент, а математически (после интегрирования) это всегда оказывается путь, требующий минимального времени. В этом выводе есть что-то, вызывающее чувство глубокого удовлетворения. Он кажется более фундаментальным, чем альтернативное описание с позиции преломления света в различных слоях воздуха. Так оно и есть. Теперь мы понимаем, что законы движения любых объектов могут быть выражены в форме, похожей на принцип Ферма. Кроме того, эта новая форма выражения классических ньютоновских законов движения привела Фейнмана к разработке новых методов описания квантово-механического поведения частиц.
Путем предоставления различных, но эквивалентных способов описания мира математика открывает перед нами новые пути понимания природы. Новый способ описания — это больше, чем пересказ другими словами. Новая картина может помочь нам обойти препятствия, которые представлялись непреодолимыми с прежних позиций. Например, методы, основанные на принципе, аналогичном принципу Ферма, позволили применить квантовую механику в таких областях, в которых она до сих пор считалась неприменимой. В частности, стоит упомянуть недавние попытки Стивена Хокинга понять, может ли квантовая механика привести к переосмыслению общей теории относительности.
Поскольку математические соотношения играют ключевую роль в нашем понимании природы, открывая новые способы описания мира, то неизбежно возникает следующий вопрос, наедине с которым я хочу оставить вас в конце этой главы. Если описание природы является математической абстракцией, то какой смысл имеет утверждение, что мы понимаем Вселенную? Например, в каком смысле законы Ньютона объясняют, почему физические тела движутся? Обратимся снова к Ричарду Фейнману:
Что значит «понять» что-либо? Представьте себе, что сложный строй движущихся объектов, который и есть мир, — это что-то вроде гигантских шахмат, в которые играют боги, а мы следим за их игрой. В чем правила игры, мы незнаем; все, что нам разрешили, — это наблюдать за игрой. Конечно, если посмотреть подольше, то кое-какие правила можно ухватить. Под основными физическими воззрениями, под фундаментальной физикой мы понимаем правила игры. Но, даже зная все правила, можно не понять какого-то хода просто из-за его сложности или ограниченности нашего ума. Тот, кто играет в шахматы, знает, что правила выучить легко, а вот понять ход игрока или выбрать наилучший ход порой очень трудно. Ничуть не лучше, а то и хуже обстоит дело в природе. Не исключено, что в конце концов все правила будут найдены, но пока отнюдь не все они нам известны. То и дело тебя поджидает рокировка или какой-нибудь другой непонятный ход. Но помимо того, что мы не знаем всех правил, лишь очень и очень редко нам удается действительно объяснить что-либо на их основе. Ведь почти все встречающиеся положения настолько сложны, что нет никакой возможности, заглядывая в правила, проследить за планом игры, а тем более предугадать очередной ход. Приходится поэтому ограничиваться самыми основными правилами. Когда мы разбираемся в них, то уже считаем, что «поняли» мир[10].
В конце концов, мы никогда не сможем пройти дальше установления каких-то законов и никогда не сможем узнать, почему они именно такие. Но мы успешно открываем эти законы путем вычленения простого из сложного и отбрасывания несущественного, руководствуясь теми правилами, о которых я рассказывал в этой и предыдущей главах. И когда мы пытаемся понять мир тем способом, которым это делают физики, это все, что мы можем надеяться сделать. Тем не менее, если мы очень постараемся и удача окажется на нашей стороне, мы сможем, по крайней мере, получить удовольствие от прогнозирования того, что произойдет в ситуации, которую никто никогда раньше не наблюдал. Поступая таким образом, мы можем надеяться обнаружить новые скрытые физические закономерности, предсказав их при помощи математики, и надо признать, что это делает процесс познания мира чрезвычайно увлекательным занятием.
ПРОГРЕСС
ТВОРЧЕСКИЙ ПЛАГИАТ
Чем сильнее вещи меняются, тем больше они остаются теми же.
Бытует расхожее мнение, что в основе новых научных открытий всегда лежат радикально новые идеи. В действительности все обстоит совсем наоборот. Старые идеи не только выживают в научных революциях, но и не теряют своего фундаментообразующего положения.
Несмотря на то что Вселенная бесконечно богата разнообразными явлениями, число основополагающих принципов, управляющих этими явлениями, весьма невелико. В результате в физике ценятся не столько новые, сколько работающие идеи. Таким образом, мы используем одни и те же концепции, один и тот же формализм, одни и те же методы, одни и те же картины мира, приспосабливая и комбинируя их в разных вариантах до тех пор, пока они работают.
Подобный подход к разгадкам тайн природы может показаться робким и не креативным, но это не так. Раз уж у кого-то хватило смелости предположить, что при помощи пращи можно убить гиганта, то кто запрещает нам предполагать, что те же законы, которые управляют полетом камня, выпущенного из пращи, не годятся для описания эволюции Вселенной? Чтобы понять, как использовать старую идею в новой и необычной ситуации, зачастую требуется немалая фантазия.
В физике «меньше» значит «больше». Пересадка старых идей в организм новых теорий столь часто завершается успехом, что мы имеем все основания ожидать, что эта практика будет приносить плоды и в дальнейшем. Даже те редкие новые физические концепции, которые пробили себе путь в науке, обречены на мирное сосуществование с уже имеющимися знаниями. Это тот творческий плагиат, который делает физику простой и понятной, поскольку это означает, что фундаментальных физических принципов очень мало.
Одним из величайших современных заблуждений относительно науки является представление, будто научные революции сметают все, что было прежде. Например, часто приходится слышать, что Эйнштейн опроверг Ньютона. Но это не так. Движение мяча, который я выпускаю из своей руки, описывается и всегда будет описываться законами Ньютона. И никакая научная революция не заставит его падать вверх. Наиважнейшим «законом» физики является требование, чтобы новые теории всегда согласовывались со старыми, чья работоспособность проверена практикой. Поэтому все последующие теории всегда будут активно заимствовать идеи у предыдущих.
Этот метод «делания науки» дополняет метод аппроксимации реальности, о котором я говорил ранее. Фейнмановское «к черту торпеды, полный вперед!» предполагает, что не обязательно понимать абсолютно все, чтобы двигаться дальше. Мы исследуем неизвестные воды при помощи тех инструментов, которые имеются в нашем распоряжении, не теряя времени и сил на создание нового арсенала.