Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Книги » Домашняя » Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - Шон Кэрролл 📕 - Книга онлайн бесплатно

Книга Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - Шон Кэрролл

228
0
Читать книгу Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - Шон Кэрролл полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 11 12 13 ... 90
Перейти на страницу:

Поэтому когда Яго закончил процедуру и сделал свой показательный глоток, вода, которую он пил, была столь же чиста, как и вода из крана. Сторонники гомеопатии, конечно, знают все это, но считают, что молекулы воды сохраняют «память» о любом веществе, первоначально в ней растворенном, а приготовленный таким образом раствор даже действеннее, чем первоначальное вещество. Это не соответствует всему, что мы знаем из физики и химии, да и клинические испытания гомеопатических препаратов показывают, что их эффективность в борьбе с болезнью не выше, чем у плацебо.

Однако людям часто свойственно не доверять фактам. А ведь один из самых замечательных фактов – это то, что вещество состоит из атомов и молекул. И кроме того, для создания многообразия всего, существующего в нашем наблюдаемом мире, требуется лишь несколько фундаментальных элементарных частиц, способных образовывать различные комбинации.

На первый взгляд «зоопарк» частиц выглядит сложным и устрашающим, но на самом деле существует всего двенадцать частиц вещества, которые распадаются точно на две группы по шесть: кварки, которые участвуют в сильных ядерных взаимодействиях, и лептоны, которые этого не делают. История открытия элементарных частиц – это удивительная история, длившаяся столетие: начиная с обнаружения электрона в 1897 году и до открытия последнего элементарного фермиона (тау-нейтрино) в 2000 году. Здесь мы проведем краткую экскурсию по «зоопарку», а более подробное описание частиц и их характеристики приведем в Приложении 2. Когда все разложится по полочкам, мы будем иметь относительно простой набор частиц, из которых сделано все остальное.

Изображения атомов

Все видели схематические изображения атомов. На этих рисунках атомы похожи на крошечные солнечные системы: в центре – ядро, а вокруг него, каждый по своей орбите, вращаются электроны. Эта схема используется в качестве логотипа Комиссии по атомной энергии США. Однако на самом деле такое изображение атома – искусный обман.

Эта картинка – по сути модель атома Бора, названная в честь датского физика Нильса Бора, использовавшего в определении структуры атома идеи квантовой механики. До этого была принята другая модель атома, предложенная Эрнестом Резерфордом, английским физиком, уроженцем Новой Зеландии. В модели атома Резерфорда электроны вращались вокруг ядра на самых разных расстоянии, подобно планетам в реальной Солнечной системе (с той разницей, что на электроны действует электромагнитная сила, а не сила тяжести). Бор модифицировал эту идею, внеся ограничение, согласно которому электроны могут находиться только на определенных орбитах, и это явилось крупным шагом вперед в объяснении экспериментальных данных, касающихся спектров атомов. Теперь мы знаем, что электроны на самом деле вообще не «вращаются», потому что они в реальности не имеют точного «положения» или «скорости». Квантовая механика говорит, что электрон существует в виде облака вероятности, называемого «волновой функцией», которая показывает, где мы могли бы обнаружить частицу, если бы принялись ее искать.


Схематическое изображение атома, в данном случае атома гелия. Ядро расположено в центре и состоит из двух протонов и двух нейтронов, а два электрона «вращаются» на некотором расстоянии вокруг него.


Со всеми этими оговорками, если мы хотим получить лишь некоторое интуитивное представление о том, что в атоме происходит, сложившееся у нас в голове схематичное представление о том, как он выглядит, не так уж плохо. Ядра в центре, электроны на окраинах. Электроны относительно легкие, больше 99,9 % всей массы атома находится в ядре, а ядро состоит из смеси протонов и нейтронов. Нейтроны немного тяжелее, чем протоны, – нейтрон тяжелее электрона примерно в 1842 раза, а протон – примерно в 1836 раз. И протоны, и нейтроны называются «нуклонами», поскольку являются частицами, входящими в состав ядер. Оба нуклона удивительно похожи друг на друга, только вот протон имеет электрический заряд, а нейтрон – нейтрален, и, как уже было сказано, чуть-чуть тяжелее.

Подобно многим вещам в нашей жизни, строение атома определяется тончайшим балансом сил. Электроны притягиваются к ядру электромагнитной силой, которая гораздо сильнее, чем сила тяжести. Электромагнитное притяжение между электроном и протоном примерно в 1039 раз сильнее гравитационного притяжения между ними. Но в то время как гравитация – вещь простая (всё притягивает всё), электромагнитное взаимодействие является более хитрым. Нейтроны получили свое название потому, что они нейтральны, то есть вообще не имеют электрического заряда. И следовательно, электромагнитное взаимодействие между электроном и нейтроном равно нулю.

Частицы с одноименным электрическим зарядом отталкиваются друг от друга, в то время как противоположности, в соответствии с романтическими клише, притягиваются. Электроны притягиваются к протонам, находящимся внутри ядра, поскольку электроны отрицательно заряжены, а протоны – положительно. Но тогда возникает вопрос: почему упакованные так плотно внутри ядра протоны не отталкивают друг друга? Дело в том, что их взаимное электромагнитное отталкивание действительно существует, но оно значительно слабее, чем сильное ядерное взаимодействие. Электроны не чувствуют этого сильного взаимодействия (как нейтроны не чувствуют электромагнитного), а вот протоны и нейтроны его очень даже чувствуют, и именно поэтому могут объединяться друг с другом и образовывать атомные ядра. Однако только до определенного предела. Если ядро становится слишком большим, электрическое отталкивание усиливается настолько, что протонам уже трудно удержаться вместе, и ядро приобретает радиоактивные свойства: оно поживет еще какое-то время, а потом распадется на меньшие ядра.

Антиматерия

Все, что вы видите вокруг прямо сейчас, или видели своими глазами, или слышали своими ушами, а также воспринимали с помощью любого из органов чувств когда-либо прежде, – все это составлено из электронов, протонов и нейтронов, на которые действуют три силы – гравитация, электромагнетизм и ядерная сила. Последняя удерживает вместе протоны и нейтроны в ядрах атомов. В начале 1930-х годов был открыт нейтрон, и физикам стала известна вся троица этих частиц – электроны, протоны и нейтроны. В то время, должно быть, трудно было не поддаться искушению и не поверить, что эти три фермиона – действительно самые важные, фундаментальные ингредиенты Вселенной, то есть основные блоки конструктора «Лего», из которых все строится. Но у природы было припасено для нас еще несколько сюрпризов.

Первым, кто понял в общих чертах, как ведут себя фермионы, стал английский физик Поль Дирак. В конце 1920-х годов он вывел уравнение, описывающее поведение электрона. Физикам понадобилось много времени, чтобы понять эту работу Дирака. Непосредственным следствием уравнения Дирака является наличие у каждого фермиона частицы противоположного вида, названной античастицей. Частицы антивещества имеют точно такую же массу, что и их визави из вещества, но противоположный электрический заряд. Когда частицы и античастицы встречаются вместе, они, как правило, аннигилируют с высвобождением энергии, и если мы сможем собрать вместе некоторое количество частиц антиматерии, это даст нам (теоретически) отличный способ запасти энергию. Эта идея породила множество сюжетов в научно-фантастической литературе на тему ракетных двигателей, работающих на антивеществе.

1 ... 11 12 13 ... 90
Перейти на страницу:
Комментарии и отзывы (0) к книге "Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - Шон Кэрролл"