Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Разная литература » Интернет-журнал "Домашняя лаборатория", 2008 №1 - Журнал «Домашняя лаборатория» 📕 - Книга онлайн бесплатно

Книга Интернет-журнал "Домашняя лаборатория", 2008 №1 - Журнал «Домашняя лаборатория»

131
0
Читать книгу Интернет-журнал "Домашняя лаборатория", 2008 №1 - Журнал «Домашняя лаборатория» полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 117 118 119 ... 150
Перейти на страницу:
Раствор амилопектина в воде более жидкий и прозрачный, чем у амилозы, которая при взаимодействии с водой образует ригидный гель. Так, например, крахмал, состоящий в основном из амилопектина, по-видимому, будет иметь спрос на рынке производителей различных питательных смесей, где сейчас в качестве наполнителя используется модифицированный крахмал. Генетической модификации могут подвергаться также геномы пластид и митохондрий. Такие системы позволяют значительно увеличить содержание продукта в трансгенном материале.

Создание гербицидоустойчивых растений

В новых, интенсивных сельскохозяйственных технологиях гербициды применяются очень широко. Это связано с тем, что на смену прежним экологически опасным гербицидам широкого спектра действия, обладающим токсичностью для млекопитающих и длительно сохраняющимся во внешней среде, приходят новые, более совершенные и безопасные соединения. Однако они обладают недостатком — подавляют рост не только сорняков, но и культурных растений. Такие высокоэффективные гербициды, как, глифосат, атразины интенсивно изучаются на предмет выявления механизма толерантности к ним некоторых сорняков. Так, на полях, где широко используют атразин, довольно часто появляются атразинустойчивые биотипы у многих видов растении.

Изучение механизма устойчивости к гербицидам с целью получения методами генетической инженерии культурных растений, обладающих этим признаком, включает следующие этапы: выявление биохимических мишеней действия гербицидов в растительной клетке: отбор устойчивых к данному гербициду организмов в качестве источников генов устойчивости: клонирование этих генов: введение их в культурные растения и изучение их функционирования

Существуют четыре принципиально различных механизма, которые могут обеспечивать устойчивость к тем или иным химическим соединениям, включая гербициды: транспортный, элиминирующий, регуляционный и контактный. Транспортный механизм устойчивости заключается в невозможности проникновения гербицида в клетку. При действии элиминирующего механизма устойчивости вещества, попавшие внутрь клетки, могут разрушаться с помощью индуцируемых клеточных факторов,

чаще всего деградирующих ферментов, а также подвергаться тому или иному виду модификации, образуя неактивные безвредные для клетки продукты. При регуляционной резистентности белок или фермент клетки, инактивирующийся под действием гербицида, начинает усиленно синтезироваться, ликвидируя, таким образом, дефицит нужного метаболита в клетке. Контактный механизм устойчивости обеспечивается изменением структуры мишени (белок или фермент), взаимодействием с которым связано повреждающее действие гербицида

Установлено, что признак гербицидоустойчивости является моногенным, то есть признак детерминируется чаще всего одним-единственным геном. Это очень облегчает возможность использования технологии рекомбинантной ДНК для передачи этого признака. Гены, кодирующие те или иные ферменты деструкции и модификации гербицидов, могут быть с успехом использованы для создания гербицидоустойчивых растении методами генетической инженерии.

Традиционные методы селекции создания сортов, устойчивых к гербицидам, очень, длительны и малорезультативны. Наиболее широко применяемый за рубежом гербицид глифосат (коммерческое название Roundup) подавляет синтез важнейших ароматических аминокислот, воздействуя на фермент 5-енолпирувилшикимат-3-фосфатсинтазу (ЕПШФ-синтаза). Известные случаи устойчивости к этому гербициду связаны либо с повышением уровня синтеза этого фермента (регуляционный механизм), либо с возникновением мутантного фермента, нечувствительного к глифосфату (контактный механизм). Из устойчивых к глифосфату растений был выделен ген ЕПШФ-синтазы и поставлен под промотор вируса мозаики цветной капусты. С помощью Ti-плазмиды эта генетическая конструкция была введена в клетки петунии. При наличии одной копии гена в регенерированных из трансформированных клеток растениях синтезировалось фермента в 20–40 раз больше, чем в исходных растениях, но устойчивость к глифосфату увеличилась только в 10 раз.

К числу наиболее распространенных гербицидов, используемых при обработке зерновых культур, относится атразин. Он подавляет фотосинтез, связываясь с одним из белков фотосистемы II и прекращая транспорт электронов. Устойчивость к гербициду возникает в результате точечных мутаций в этом пластохинон связывающем белке (замена серина на глицин), вследствие чего он теряет способность взаимодействовать с гербицидом. В ряде случаев удалось осуществить перенос гена мутантного белка в чувствительные к атразину растения с помощью Ti-плазмиды. Интегрированный в хромосому растений ген устойчивости был снабжен сигнальной последовательностью, которая обеспечивала транспорт синтезируемого белка в хлоропласты. Химерные растения проявляли значительную устойчивость к таким концентрациям атразина, которые вызывали гибель контрольных растений с геном белка дикого типа. Некоторые растения способны инактивировать атразин путем отщепления остатка хлора ферментом глутатион-3-трансфераза. Этот же фермент инактивирует и другие родственные гербициды триазинового ряда (пропазин, симазин и др.).

Существуют растения, естественная устойчивость которых к гербицидам основана на детоксикации. Так, устойчивость растений к хлорсульфурону может быть связана с дезактивацией молекулы гербицида путем его гидроксилирования и последующего гликозилирования введенной гидроксильной группы. Создание растений, устойчивых к патогенам и вредителям Устойчивость растений к тем или иным патогенам чаще всего является сложным мультигенным признаком.

Одновременная передача нескольких локусов трудна даже методами генной инженерии, не говоря о классических методах селекции. Более простым является другой путь. Известно, что у устойчивых растений при атаке патогенов изменяется метаболизм. Накапливаются такие соединения, как Н2О, салициловая кислота, фитоаллексины. Повышенный уровень этих соединений способствует противостоянию растения в борьбе с патогенами.

Вот один из примеров, доказывающий роль салициловой кислоты в иммунном ответе растений. Трансгенные растения табака, которые содержат бактериальный ген, контролирующий синтез салицилат гидролазы (этот фермент разрушает салициловую кислоту), были неспособны к иммунному ответу. Поэтому изменение генно-инженерным путем уровня салициловой кислоты или выработки в растениях в ответ на патоген Н2О2 может быть перспективным для создания устойчивых трансгенных растений.

В фитовирусологии широко известен феномен индуцированной перекрестной устойчивости растений к вирусным инфекциям. Сущность этого явления состоит в том, что заражение растения одним штаммом вируса предотвращает последующую инфекцию этих растений другим вирусным штаммом. Молекулярный механизм подавления вирусной инфекции пока неясен. Показано, что для иммунизации растений достаточно введения отдельных вирусных генов, например генов капсидных белков. Так, ген белка оболочки вируса табачной мозаики перенесли в клетки табака и получили трансгенные растения, у которых 0,1 % всех белков листьев был представлен вирусным белком. Значительная часть этих растений при инфицировании вирусом не проявляла никаких симптомов заболевания. Возможно, что синтезирующийся в клетках белок оболочки вируса мешает вирусной РНК нормально функционировать и формировать полноценные вирусные частицы. Установлено, что экспрессия капсидного белка вируса табачной мозаики, вируса мозаики люцерны, вируса огуречной мозаики, Х-вируса картофеля в соответствующих трансгенных растениях (табак, томаты, картофель, огурцы, перцы) обеспечивает высокий уровень их защиты от последующей вирусной инфекции. Причем у трансформированных растений не отмечалось снижения фертильности, нежелательного изменения ростовых и физиологических характеристик исходных экземпляров и их потомства. Полагают, что индуцированная устойчивость растений к вирусам обусловлена особым антивирусным белком, очень похожим на интерферон животных. Представляется возможным методом генетической инженерии усилить экспрессию гена, кодирующего этот белок, путем его амплификации или подстановки под более сильный промотор.

Следует отметить, что использование генетической инженерии для защиты растений от различных патогенных микроорганизмов в значительной мере сдерживается недостаточностью знаний о механизмах защитных реакций растений. Для борьбы с насекомыми-вредителями в растениеводстве используются химические средства — инсектициды. Однако они оказывают

1 ... 117 118 119 ... 150
Перейти на страницу:
Комментарии и отзывы (0) к книге "Интернет-журнал "Домашняя лаборатория", 2008 №1 - Журнал «Домашняя лаборатория»"