Telegram
Онлайн библиотека бесплатных книг и аудиокниг » Книги » Домашняя » Логика случая. О природе и происхождении биологической эволюции - Евгений Кунин 📕 - Книга онлайн бесплатно

Книга Логика случая. О природе и происхождении биологической эволюции - Евгений Кунин

179
0
Читать книгу Логика случая. О природе и происхождении биологической эволюции - Евгений Кунин полностью.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 108 109 110 ... 151
Перейти на страницу:

Рис. 12-2а. Разнообразие белковых доменов, кристаллизация системы трансляции и LUCA(S): эволюция нуклеотид-связывающих доменов укладки Россмана. Указаны только достаточно хорошо изученные белки. USPA — универсальный фактор стресса A; ETFP — электронтранспортный флавопротеин; vWA — фактор фон Виллебранда A; Toprim — каталитический домен топоизомераз, праймаз и некоторых нуклеаз; ДГК — дегалогеназа галоидных кислот; Receiver — компонент двухкомпонентной сигнальной системы прокариот; TIR — широко распространенный домен белок-белкового взаимодействия в сигнальных системах прокариот и эукариот; Sir2—деацетилаза белков (в частности, гистонов). Подробное описание см. Aravind et al., 2002 и ссылки в этой статье.

Рис. 12-2б. Эволюция нуклеотид-связывающих доменов ГТФаз и родственных им АТФаз, по данным из Leipe et al., 2002. Указаны только хорошо изученные белки. Динеин, динамин, кинезин и миозин — моторные ГТФазы и АТФазы, ассоциированные с цитоскелетом; Ras/Rho — сигнальные ГТФазы, ассоциированные, в частности, с эндомембранной системой эукариот; G-белки — ассоциированные с мембраной ГТФазы, функционирующие совместно с G-белок-сопряженными рецепторами; PurA и PyrG — ферменты метаболизма нуклеотидов; ArgK, аргинин-киназа, — фермент метаболизма аминокислот; Mrp и MinD — АТФазы, участвующие в клеточном делении прокариот; SRP — частица узнавания сигналов.

Эволюционный анализ обширнейшего класса фосфат-связывающих доменов (известных также как P-петли) ГТФаз, в котором множество трансляционных факторов образует компактные семейства, приводит, в сущности, к тому же результату: в последовательности эволюционных бифуркаций (ветвлений эволюционного древа), представляющей историю ГТФазного домена, трансляционные факторы также возникли сравнительно поздно (см. рис. 12-2а; Leipe et al., 2002). ГТФазы образуют лишь одну из многих больших ветвей эволюционного древа укладки, содержащей P-петлю, которая включает огромное разнообразие белковых доменов, связывающих НТФ (нуклеозидтрифосфаты — чаще всего субстратом является АТФ, гораздо реже ГТФ и изредка — другие НТФ) и расщепляющих β-γ-фосфодиэфирную связь (см. рис. 12-2б). Эта укладка является самым распространенным доменом во всех прокариотах (Wolf et al., 1999b), и во всех реконструкциях генетического разнообразия LUCA(S) выявляется несколько десятков содержащих P-петлю белков. Таким образом, интенсивная эволюция домена, содержащего P-петлю, предшествовала не только LUCA(S), но и, что еще более удивительно, современной системе трансляции. Сама P-петля (известная также под названием мотива Уолкера A[127], рис. 12-3), богатая глицином петля, оборачивающая фосфатный конец НТФ-субстрата, является наиболее консервативным мотивом среди всех белковых последовательностей, несомненно зафиксированным на самых ранних стадиях белковой эволюции (Gorbalenya and Koonin, 1989; Trifonov et al., 2006).

Рис. 12-3. P-петля, древнейший и самый распространенный в белковых последовательностях мотив. На рисунке изображено выравнивание Р-петель восьми древних НТФаз, каждая из которых, по данным эволюционных реконструкций, была представлена в LUCA(S) (Mirkin et al., 2003). Для каждой линии представлены три последовательности: бактерии (Escherichia coli, Ecoli), археи (Pyrococcus abyssi, Pabys) и эукариота (дрожжи Saccharomyces cerevisiae, Scere). Белыми буквами на черном фоне обозначены аминокислотные остатки, напрямую взаимодействующие с фосфатным концом НТФ, а серым фоном — характерная гидрофобная β-последовательность, предшествующая ФСП. SRP — частица узнавания сигналов.

Таким образом, из сравнительного анализа древних паралогических отношений между белковыми компонентами системы трансляции следует бесспорный, хоть и парадоксальный, вывод: за интересным исключением основных рибосомных белков, все белки, играющие главную роль в современной трансляции, возникли в результате долгой и сложной эволюции различных белковых доменов. Возникает замкнутый круг: для возникновения этих белков требуется точная и эффективная система трансляции. Древняя система трансляции могла быть и не столь совершенной, как современная, но несомненно, что она отличалась от нее не более чем на порядок по точности и скорости, иначе белковая эволюция не стала бы возможной. Однако из всего, что нам известно о современной системе трансляции, такой уровень точности невообразим без сложного и специализированного белкового аппарата.

Итак, система трансляции ярко высвечивает парадокс Дарвина—Эйгена, присущий любому анализу возникновения сложных биологических систем: для работы эффективной и точной системы трансляции современного типа требуется множество различных белков, но для того, чтобы эти белки могли возникнуть, нужна система трансляции почти столь же совершенная, как современная. По-видимому, существует только одно возможное разрешение этого парадокса, а именно через отказ от первой части противопоставления: следует заключить, что трансляционная система, сравнимая с современной по точности и скорости, работала в отсутствие значительного разнообразия белков и, возможно, вообще без белков. Таким образом, основываясь на сравнительном анализе составных частей системы трансляции, мы должны сделать предположение о существовании сложного и разнообразного мира РНК, в котором уже действовала некая разновидность цикла Дарвина—Эйгена.

1 ... 108 109 110 ... 151
Перейти на страницу:
Комментарии и отзывы (0) к книге "Логика случая. О природе и происхождении биологической эволюции - Евгений Кунин"