Книга Искусство мыслить правильно - Александр Ивин
Шрифт:
Интервал:
Закладка:
Последствия были для Фреге трагическими. Ему было тогда всего пятьдесят пять лет, но после испытанного потрясения он не опубликовал больше ни одной значительной работы по логике, хотя прожил еще более двадцати лет. Он не откликнулся даже на оживленную дискуссию, названную парадоксом Рассела, и никак не прореагировал на многочисленные предлагавшиеся решения этого парадокса.
Фреге был типичным представителем логики конца XIX века, свободной от каких бы то ни было парадоксов, логики, уверенной в своих возможностях и претендующей на то, чтобы быть критерием строгости даже для математики. Парадоксы показали, что «абсолютная строгость», достигнутая якобы логикой, была не более чем иллюзией. Они бесспорно показали, что логика — в том интуитивном виде, какой она тогда имела, — нуждается в глубоком пересмотре.
Прошел целый век с тех пор, как началось оживленное обсуждение парадоксов. Предпринятая ревизия логики так и не привела, однако, к недвусмысленному их разрешению.
И вместе с тем такое состояние вряд ли кому кажется теперь невыносимым. С течением времени отношение к парадоксам стало более спокойным и даже более терпимым, чем в момент их обнаружения.
Дело не только в том, что парадоксы сделались чем-то хотя и неприятным, но тем не менее привычным. И, разумеется, не в том, что с ними смирились. Они все еще остаются в центре внимания логиков, поиски их решений активно продолжаются.
Ситуация изменилась прежде всего в том отношении, что парадоксы оказались, так сказать, локализованными. Они обрели свое определенное, хотя и неспокойное место в широком спектре логических исследований.
Стало ясно, что абсолютная строгость, какой она рисовалась в конце прошлого века и даже иногда в начале нынешнего, — это в принципе недостижимый идеал.
Было осознано также, что нет одной-единственной, стоящей особняком проблемы парадоксов. Проблемы, связанные с ними, относятся к разным типам и затрагивают, в сущности, все основные разделы логики. Обнаружение парадокса заставляет глубже проанализировать наши логические интуиции и заняться систематической переработкой основ науки логики. При этом стремление избежать парадоксов не является ни единственной, ни даже, пожалуй, главной задачей. Они являются хотя и важным, но только поводом для размышления над центральными темами логики. Продолжая сравнение парадоксов с особо отчетливыми симптомами болезни, можно сказать, что стремление немедленно исключить парадоксы было бы подобно желанию снять такие симптомы, не особенно заботясь о самой болезни. Требуется не просто разрешение парадоксов, необходимо их объяснение, углубляющее наши представления о логических закономерностях мышления.
Размышление над парадоксами является, без сомнения, одним из лучших испытаний наших логических способностей и одним из наиболее эффективных средств их тренировки.
Знакомство с парадоксами, проникновение в суть стоящих за ними проблем — непростое дело. Оно требует максимальной сосредоточенности и напряженного вдумывания в несколько, казалось бы, простых утверждений. Только при этом условии парадокс может быть понят. Трудно претендовать на изобретение новых решений логических парадоксов, но уже ознакомление с предлагавшимися их решениями является хорошей школой практической логики.
Какие выводы для логики следуют из существования парадоксов?
Прежде всего, наличие большого числа парадоксов говорит как раз о силе логики как науки, а не о ее слабости, как это может показаться. Обнаружение парадоксов не случайно совпало как раз с периодом наиболее интенсивного развития современной логики и наибольших ее успехов.
Первые парадоксы были открыты еще до возникновения логики как особой науки. Многие парадоксы были обнаружены в средние века. Позднее они оказались, однако, забытыми и были вновь открыты уже в нашем веке.
Средневековым логикам не были известны понятия «множество» и «элемент множества», введенные в науку только во второй половине XIX века. Но «чутье» на парадоксы было отточено в средние века настолько, что уже в то давнее время высказывались определенные опасения по поводу «самоприменимых» понятий. Простейшим их примером является понятие «быть собственным элементом», фигурирующее во многих нынешних парадоксах.
Однако такие опасения, как и вообще все предостережения, касающиеся парадоксов, не были до нашего века в должной мере систематическими и определенными. Они не вели к каким-либо четким предложениям о пересмотре привычных способов мышления и выражения.
Только современная логика извлекла из забвения саму проблему парадоксов, открыла или переоткрыла большинство конкретных логических парадоксов. Она показала далее, что способы мышления, традиционно исследовавшиеся логикой, совершенно недостаточны для устранения парадоксов, и указала принципиально новые приемы обращения с ними.
Парадоксы ставят важный вопрос: в чем, собственно, подводят нас некоторые обычные методы образования понятий и методы рассуждений? Ведь они представлялись совершенно естественными и убедительными, пока не выявилось, что они парадоксальны.
Парадоксами подрывается вера в то, что привычные приемы теоретического мышления сами по себе и без всякого особого контроля за ними обеспечивают надежное продвижение к истине.
Требуя радикальных изменений в излишне доверчивом подходе к теоретизированию, парадоксы представляют собой резкую критику логики в ее наивной, интуитивной форме. Они играют роль фактора, контролирующего и ставящего ограничения на пути конструирования дедуктивных систем логики. И эту их роль можно сравнить с ролью эксперимента, проверяющего правильность гипотез в таких науках, как физика и химия, и заставляющего вносить в эти гипотезы изменения.
Парадокс в теории говорит о несовместимости допущений, лежащих в ее основе. Он выступает как своевременно обнаруженный симптом болезни, без которого ее можно было бы и проглядеть.
Разумеется, болезнь проявляется многообразно и ее в конце концов удается раскрыть и без таких острых симптомов как парадоксы. Скажем, основания теории множеств были бы проанализированы и уточнены, если бы даже никакие парадоксы в этой области не были обнаружены. Но не было бы той резкости и неотложности, с какой поставили проблему пересмотра теории множеств обнаруженные в ней парадоксы.
Парадоксам посвящена обширная литература, предложено большое число их объяснений. Но ни одно из этих объяснений не является общепризнанным и сколь-нибудь полного согласия в вопросе о происхождении парадоксов и способах избавления от них нет.
«За последние шестьдесят лет сотни книг и статей были посвящены цели разрешения парадоксов, однако результаты поразительно бедны в сравнении с затраченными усилиями», — пишет А. Френкель. «Похоже на то, — заключает свой анализ парадоксов X. Карри, — что требуется полная реформа логики, и математическая логика может стать главным инструментом для проведения этой реформы».
Следует обратить внимание на одно важное различие. Устранение парадоксов и их разрешение — это вовсе не одно и то же. Устранить парадокс из некоторой теории — значит перестроить ее так, чтобы парадоксальное утверждение оказалось в ней недоказуемым. Каждый парадокс опирается на большое число определений, допущений и аргументов. Его вывод в теории представляет собой некоторую цепочку рассуждений. Формально говоря, можно подвергнуть сомнению любое ее звено, отбросить его и тем самым разорвать цепочку и устранить парадокс. Во многих работах так и поступают и этим ограничиваются.